Seren Griffiths, Lisa Brown, Neil Carlin, Tim Evans, Bisserka Gaydarska, Emma Hannah, Peter McKeague
{"title":"放射性碳、大数据和国际遗产","authors":"Seren Griffiths, Lisa Brown, Neil Carlin, Tim Evans, Bisserka Gaydarska, Emma Hannah, Peter McKeague","doi":"10.1017/rdc.2023.111","DOIUrl":null,"url":null,"abstract":"<p>Radiocarbon data are the most commonly used chronometric measurement technique in archaeology. The introduction of the radiocarbon method offered new potential for independent, internationalized research projects. Today millions of radiocarbon measurements exist globally. However, the many strengths of radiocarbon for research in archaeology have also created an internationally significant challenge in heritage practice. How can we attempt to curate huge volumes of radiocarbon “legacy” data in systematic ways that facilitate interdisciplinary, international research? How can we contend with a dataset that is rapidly scalable, and needs to be kept live—<span>updated</span>, <span>validated</span>, <span>curated</span>, and <span>related</span> to existing national archives and data systems—beyond the timescale of any individual project? In this paper we introduce an international project, “<span>Project Radiocarbon; Big Data, integrated cross-national heritage histories</span>”, working across the historic environment sector in Ireland and the United Kingdom, that is developing a solution to these issues. We argue that we need to think critically about how we classify and curate radiocarbon data, to render them interoperable and findable. Such work requires inter-sector approaches to ensure sustainability and scalability, and to anticipate the increasing value of these data into the future.</p>","PeriodicalId":21020,"journal":{"name":"Radiocarbon","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RADIOCARBON, BIG DATA AND INTERNATIONAL HERITAGE\",\"authors\":\"Seren Griffiths, Lisa Brown, Neil Carlin, Tim Evans, Bisserka Gaydarska, Emma Hannah, Peter McKeague\",\"doi\":\"10.1017/rdc.2023.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Radiocarbon data are the most commonly used chronometric measurement technique in archaeology. The introduction of the radiocarbon method offered new potential for independent, internationalized research projects. Today millions of radiocarbon measurements exist globally. However, the many strengths of radiocarbon for research in archaeology have also created an internationally significant challenge in heritage practice. How can we attempt to curate huge volumes of radiocarbon “legacy” data in systematic ways that facilitate interdisciplinary, international research? How can we contend with a dataset that is rapidly scalable, and needs to be kept live—<span>updated</span>, <span>validated</span>, <span>curated</span>, and <span>related</span> to existing national archives and data systems—beyond the timescale of any individual project? In this paper we introduce an international project, “<span>Project Radiocarbon; Big Data, integrated cross-national heritage histories</span>”, working across the historic environment sector in Ireland and the United Kingdom, that is developing a solution to these issues. We argue that we need to think critically about how we classify and curate radiocarbon data, to render them interoperable and findable. Such work requires inter-sector approaches to ensure sustainability and scalability, and to anticipate the increasing value of these data into the future.</p>\",\"PeriodicalId\":21020,\"journal\":{\"name\":\"Radiocarbon\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiocarbon\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/rdc.2023.111\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiocarbon","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/rdc.2023.111","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Radiocarbon data are the most commonly used chronometric measurement technique in archaeology. The introduction of the radiocarbon method offered new potential for independent, internationalized research projects. Today millions of radiocarbon measurements exist globally. However, the many strengths of radiocarbon for research in archaeology have also created an internationally significant challenge in heritage practice. How can we attempt to curate huge volumes of radiocarbon “legacy” data in systematic ways that facilitate interdisciplinary, international research? How can we contend with a dataset that is rapidly scalable, and needs to be kept live—updated, validated, curated, and related to existing national archives and data systems—beyond the timescale of any individual project? In this paper we introduce an international project, “Project Radiocarbon; Big Data, integrated cross-national heritage histories”, working across the historic environment sector in Ireland and the United Kingdom, that is developing a solution to these issues. We argue that we need to think critically about how we classify and curate radiocarbon data, to render them interoperable and findable. Such work requires inter-sector approaches to ensure sustainability and scalability, and to anticipate the increasing value of these data into the future.
期刊介绍:
Radiocarbon serves as the leading international journal for technical and interpretive articles, date lists, and advancements in 14C and other radioisotopes relevant to archaeological, geophysical, oceanographic, and related dating methods. Established in 1959, it has published numerous seminal works and hosts the triennial International Radiocarbon Conference proceedings. The journal also features occasional special issues. Submissions encompass regular articles such as research reports, technical descriptions, and date lists, along with comments, letters to the editor, book reviews, and laboratory lists.