增强肿瘤对血脑屏障的穿透力:内质网膜杂交 siRNA 纳米复合体

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Nano Pub Date : 2023-12-12 DOI:10.1016/j.mtnano.2023.100442
Chong Qiu , Shun Tao Liang , Qing Chao Tu , Chen Pan , Jia Yin Han , Bo Wu , Qiu Yan Guo , Yu Qian Lu , Jun Zhe Zhang , Yu Qing Meng , Qiao Li Shi , Fei Xia , Ji Gang Wang
{"title":"增强肿瘤对血脑屏障的穿透力:内质网膜杂交 siRNA 纳米复合体","authors":"Chong Qiu ,&nbsp;Shun Tao Liang ,&nbsp;Qing Chao Tu ,&nbsp;Chen Pan ,&nbsp;Jia Yin Han ,&nbsp;Bo Wu ,&nbsp;Qiu Yan Guo ,&nbsp;Yu Qian Lu ,&nbsp;Jun Zhe Zhang ,&nbsp;Yu Qing Meng ,&nbsp;Qiao Li Shi ,&nbsp;Fei Xia ,&nbsp;Ji Gang Wang","doi":"10.1016/j.mtnano.2023.100442","DOIUrl":null,"url":null,"abstract":"<div><p><span>The penetration of nanocarriers<span> across the blood-brain barrier (BBB) through transcellular transcytosis is difficult owing to their lysosomal degradation after endocytosis. This obstacle prevents the targeted delivery of siRNAs in the treatment of glioma or other brain diseases. In this study, endoplasmic reticulum (ER) membranes derived from glioma cells were used to fabricate the integrative hybrid nanoplexes (EhCv/siRNA NPs) for enhancing the penetration efficiency of crossing BBB through transcytosis. Compared to undecorated Cv/siRNA NPs, the ER membrane-decorated EhCv/siRNA NPs evaded lysosomal degradation through a non-degradable endosome-Golgi/ER pathway, resulting in a significantly stronger ability to cross the BBB through transcellular transcytosis and better gene-silencing effects of siRNAs in U87 glioma </span></span><em>in vitro</em> and <em>in vivo</em>. Altogether, this study is valuable for designing the optimized non-degradable transcellular transcytosis across the blood-brain barrier and advancing drug delivery to brain.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"25 ","pages":"Article 100442"},"PeriodicalIF":8.2000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced tumor penetration across the blood-brain barrier: endoplasmic reticulum membrane hybrid siRNA nanoplexes\",\"authors\":\"Chong Qiu ,&nbsp;Shun Tao Liang ,&nbsp;Qing Chao Tu ,&nbsp;Chen Pan ,&nbsp;Jia Yin Han ,&nbsp;Bo Wu ,&nbsp;Qiu Yan Guo ,&nbsp;Yu Qian Lu ,&nbsp;Jun Zhe Zhang ,&nbsp;Yu Qing Meng ,&nbsp;Qiao Li Shi ,&nbsp;Fei Xia ,&nbsp;Ji Gang Wang\",\"doi\":\"10.1016/j.mtnano.2023.100442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The penetration of nanocarriers<span> across the blood-brain barrier (BBB) through transcellular transcytosis is difficult owing to their lysosomal degradation after endocytosis. This obstacle prevents the targeted delivery of siRNAs in the treatment of glioma or other brain diseases. In this study, endoplasmic reticulum (ER) membranes derived from glioma cells were used to fabricate the integrative hybrid nanoplexes (EhCv/siRNA NPs) for enhancing the penetration efficiency of crossing BBB through transcytosis. Compared to undecorated Cv/siRNA NPs, the ER membrane-decorated EhCv/siRNA NPs evaded lysosomal degradation through a non-degradable endosome-Golgi/ER pathway, resulting in a significantly stronger ability to cross the BBB through transcellular transcytosis and better gene-silencing effects of siRNAs in U87 glioma </span></span><em>in vitro</em> and <em>in vivo</em>. Altogether, this study is valuable for designing the optimized non-degradable transcellular transcytosis across the blood-brain barrier and advancing drug delivery to brain.</p></div>\",\"PeriodicalId\":48517,\"journal\":{\"name\":\"Materials Today Nano\",\"volume\":\"25 \",\"pages\":\"Article 100442\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588842023001414\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842023001414","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于纳米载体在内吞后会被溶酶体降解,因此很难通过跨细胞转囊作用穿透血脑屏障(BBB)。这一障碍阻碍了 siRNAs 在胶质瘤或其他脑部疾病治疗中的靶向递送。本研究利用胶质瘤细胞的内质网(ER)膜制备了整合型混合纳米复合体(EhCv/siRNA NPs),以提高其通过跨细胞作用穿越 BBB 的渗透效率。与未装饰的Cv/siRNA NPs相比,装饰了ER膜的EhCv/siRNA NPs可通过不可降解的内质体-高尔基体/ER途径逃避溶酶体降解,因此通过跨细胞转运穿越BBB的能力明显增强,在体外和体内对U87胶质瘤的siRNA基因沉默效果更好。总之,这项研究对设计优化的非降解性跨细胞转囊穿越血脑屏障和推进脑部给药具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced tumor penetration across the blood-brain barrier: endoplasmic reticulum membrane hybrid siRNA nanoplexes

The penetration of nanocarriers across the blood-brain barrier (BBB) through transcellular transcytosis is difficult owing to their lysosomal degradation after endocytosis. This obstacle prevents the targeted delivery of siRNAs in the treatment of glioma or other brain diseases. In this study, endoplasmic reticulum (ER) membranes derived from glioma cells were used to fabricate the integrative hybrid nanoplexes (EhCv/siRNA NPs) for enhancing the penetration efficiency of crossing BBB through transcytosis. Compared to undecorated Cv/siRNA NPs, the ER membrane-decorated EhCv/siRNA NPs evaded lysosomal degradation through a non-degradable endosome-Golgi/ER pathway, resulting in a significantly stronger ability to cross the BBB through transcellular transcytosis and better gene-silencing effects of siRNAs in U87 glioma in vitro and in vivo. Altogether, this study is valuable for designing the optimized non-degradable transcellular transcytosis across the blood-brain barrier and advancing drug delivery to brain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
期刊最新文献
Enhanced microwave absorption properties of Ti3AlC2 particles modified by a facile preoxidation strategy Poly aryletherketone chemically modified multi-walled carbon nanotubes/poly etheretherketone electromagnetic interference shielding foam suitable for high temperature and strong corrosive media Metal-sown selective area growth of high crystalline quality InAsSb nanowires and networks by molecular-beam epitaxy Building robust copper nanostructures via carbon coating derived from polydopamine for oxygen reduction reaction PAM material that instantly gives ordinary fabrics excellent flame retardant and thermal insulation properties for fire rescue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1