原位合成具有卵壳结构的 Fe7Se8,实现快速稳定的钾储存

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Cell Reports Physical Science Pub Date : 2023-12-12 DOI:10.1016/j.xcrp.2023.101736
Yizhi Yuan, Shanshan Wang, Shengyang Li, Song Chen, Hongli Deng, Xinxin Jia, Qiusheng Zhang, Wei Chen, Qingyi Zhao, Zhongzhu Liu, Robson Monteiro, Rogerio Ribas, Jiang Zhong, Hao Chen, Jian Zhu, Bingan Lu
{"title":"原位合成具有卵壳结构的 Fe7Se8,实现快速稳定的钾储存","authors":"Yizhi Yuan, Shanshan Wang, Shengyang Li, Song Chen, Hongli Deng, Xinxin Jia, Qiusheng Zhang, Wei Chen, Qingyi Zhao, Zhongzhu Liu, Robson Monteiro, Rogerio Ribas, Jiang Zhong, Hao Chen, Jian Zhu, Bingan Lu","doi":"10.1016/j.xcrp.2023.101736","DOIUrl":null,"url":null,"abstract":"<p>Iron-based selenides are considered one of the most promising candidates for anode materials in potassium-ion batteries due to their impressive theoretical capacities. However, the challenges of enormous volume expansion and low intrinsic conductivity result in suboptimal electrochemical performance. Here, an iron selenide (Fe<sub>7</sub>Se<sub>8</sub>) with a yolk-shell structure (Fe<sub>7</sub>Se<sub>8</sub>/C@NC) is designed that effectively improves structural stability, relieves volume expansion, enhances ionic conductivity via carbon-shell construction, and prevents architecture damage caused by Fe<sub>7</sub>Se<sub>8</sub> aggregation. Because of these advantages, the electrode presents a satisfactory cycling stability (206.6 mAh g<sup>−1</sup> after 3,200 cycles at 1 A g<sup>−1</sup>) and an excellent rate capacity (205.2 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup>). <em>In situ</em> X-ray diffraction and <em>ex situ</em> transmission electron microscopy characterizations elucidate the potassium storage mechanism of Fe<sub>7</sub>Se<sub>8</sub>. The electrochemical performance of the composites positions them as promising electrode materials.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"20 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ synthesis of Fe7Se8 with a yolk-shell structure achieves fast and stabilized potassium storage\",\"authors\":\"Yizhi Yuan, Shanshan Wang, Shengyang Li, Song Chen, Hongli Deng, Xinxin Jia, Qiusheng Zhang, Wei Chen, Qingyi Zhao, Zhongzhu Liu, Robson Monteiro, Rogerio Ribas, Jiang Zhong, Hao Chen, Jian Zhu, Bingan Lu\",\"doi\":\"10.1016/j.xcrp.2023.101736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Iron-based selenides are considered one of the most promising candidates for anode materials in potassium-ion batteries due to their impressive theoretical capacities. However, the challenges of enormous volume expansion and low intrinsic conductivity result in suboptimal electrochemical performance. Here, an iron selenide (Fe<sub>7</sub>Se<sub>8</sub>) with a yolk-shell structure (Fe<sub>7</sub>Se<sub>8</sub>/C@NC) is designed that effectively improves structural stability, relieves volume expansion, enhances ionic conductivity via carbon-shell construction, and prevents architecture damage caused by Fe<sub>7</sub>Se<sub>8</sub> aggregation. Because of these advantages, the electrode presents a satisfactory cycling stability (206.6 mAh g<sup>−1</sup> after 3,200 cycles at 1 A g<sup>−1</sup>) and an excellent rate capacity (205.2 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup>). <em>In situ</em> X-ray diffraction and <em>ex situ</em> transmission electron microscopy characterizations elucidate the potassium storage mechanism of Fe<sub>7</sub>Se<sub>8</sub>. The electrochemical performance of the composites positions them as promising electrode materials.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2023.101736\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2023.101736","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铁基硒化物因其惊人的理论容量而被认为是钾离子电池中最有前途的负极材料之一。然而,巨大的体积膨胀和较低的内在电导率使其电化学性能不尽如人意。在此,我们设计了一种具有卵壳结构的硒化铁(Fe7Se8)(Fe7Se8/C@NC),它能有效提高结构稳定性,缓解体积膨胀,通过碳壳结构提高离子导电性,并防止因 Fe7Se8 聚集而造成的结构损坏。由于这些优点,该电极具有令人满意的循环稳定性(在 1 A g-1 条件下循环 3,200 次后达到 206.6 mAh g-1)和出色的速率容量(在 5 A g-1 条件下达到 205.2 mAh g-1)。原位 X 射线衍射和原位透射电子显微镜表征阐明了 Fe7Se8 的钾存储机制。这种复合材料的电化学性能使其成为一种很有前途的电极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In situ synthesis of Fe7Se8 with a yolk-shell structure achieves fast and stabilized potassium storage

Iron-based selenides are considered one of the most promising candidates for anode materials in potassium-ion batteries due to their impressive theoretical capacities. However, the challenges of enormous volume expansion and low intrinsic conductivity result in suboptimal electrochemical performance. Here, an iron selenide (Fe7Se8) with a yolk-shell structure (Fe7Se8/C@NC) is designed that effectively improves structural stability, relieves volume expansion, enhances ionic conductivity via carbon-shell construction, and prevents architecture damage caused by Fe7Se8 aggregation. Because of these advantages, the electrode presents a satisfactory cycling stability (206.6 mAh g−1 after 3,200 cycles at 1 A g−1) and an excellent rate capacity (205.2 mAh g−1 at 5 A g−1). In situ X-ray diffraction and ex situ transmission electron microscopy characterizations elucidate the potassium storage mechanism of Fe7Se8. The electrochemical performance of the composites positions them as promising electrode materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
期刊最新文献
Amino acid-dependent phase equilibrium and material properties of tetrapeptide condensates. Paper microfluidic sentinel sensors enable rapid and on-site wastewater surveillance in community settings Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems 4.8-V all-solid-state garnet-based lithium-metal batteries with stable interface Deformation of collagen-based tissues investigated using a systematic review and meta-analysis of synchrotron x-ray scattering studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1