寻找超重元素和元素周期表的极限

IF 44.8 1区 物理与天体物理 Q1 PHYSICS, APPLIED Nature Reviews Physics Pub Date : 2023-12-11 DOI:10.1038/s42254-023-00668-y
Odile R. Smits, Christoph E. Düllmann, Paul Indelicato, Witold Nazarewicz, Peter Schwerdtfeger
{"title":"寻找超重元素和元素周期表的极限","authors":"Odile R. Smits, Christoph E. Düllmann, Paul Indelicato, Witold Nazarewicz, Peter Schwerdtfeger","doi":"10.1038/s42254-023-00668-y","DOIUrl":null,"url":null,"abstract":"The borders of the periodic table of the elements and of the chart of nuclides are not set in stone. The desire to explore the properties of atoms and their nuclei in a regime of very large numbers of electrons, protons and neutrons has motivated new experimental facilities to create new elements and nuclides at the limits of atomic number and mass. But the small production rates and short lifetimes of superheavy nuclei and their atoms mean that ‘atom-at-a-time’ studies are the only experimental way to probe them. The physical and chemical data obtained so far, augmented by theoretical calculations, indicate significant deviations from extrapolations from lighter elements and isotopes. This situation raises the following question: how much further can one push the limits of the periodic table? In this Review, we describe the major challenges in the field of the superheavy elements and speculate about future directions. Advances in superheavy element studies providing insight into the nuclear and atomic structure and the chemical behaviour of these exotic short-lived systems will help push to the limit of the periodic table of elements and revise the concept of the island of stability.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":null,"pages":null},"PeriodicalIF":44.8000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The quest for superheavy elements and the limit of the periodic table\",\"authors\":\"Odile R. Smits, Christoph E. Düllmann, Paul Indelicato, Witold Nazarewicz, Peter Schwerdtfeger\",\"doi\":\"10.1038/s42254-023-00668-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The borders of the periodic table of the elements and of the chart of nuclides are not set in stone. The desire to explore the properties of atoms and their nuclei in a regime of very large numbers of electrons, protons and neutrons has motivated new experimental facilities to create new elements and nuclides at the limits of atomic number and mass. But the small production rates and short lifetimes of superheavy nuclei and their atoms mean that ‘atom-at-a-time’ studies are the only experimental way to probe them. The physical and chemical data obtained so far, augmented by theoretical calculations, indicate significant deviations from extrapolations from lighter elements and isotopes. This situation raises the following question: how much further can one push the limits of the periodic table? In this Review, we describe the major challenges in the field of the superheavy elements and speculate about future directions. Advances in superheavy element studies providing insight into the nuclear and atomic structure and the chemical behaviour of these exotic short-lived systems will help push to the limit of the periodic table of elements and revise the concept of the island of stability.\",\"PeriodicalId\":19024,\"journal\":{\"name\":\"Nature Reviews Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":44.8000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42254-023-00668-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-023-00668-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

元素周期表和核素表的边界并不是一成不变的。在电子、质子和中子数量非常大的情况下,人们希望探索原子及其原子核的特性,这促使新的实验设备在原子序数和质量的极限上创造新元素和新核素。但是,超重原子核及其原子的生产率小、寿命短,这意味着 "一次原子 "研究是探测它们的唯一实验方法。迄今为止获得的物理和化学数据以及理论计算结果都表明,这些数据与轻元素和同位素的推断结果有很大偏差。这种情况提出了以下问题:我们还能把元素周期表的极限推得多远?在这篇综述中,我们将描述超重元素领域的主要挑战,并推测未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The quest for superheavy elements and the limit of the periodic table
The borders of the periodic table of the elements and of the chart of nuclides are not set in stone. The desire to explore the properties of atoms and their nuclei in a regime of very large numbers of electrons, protons and neutrons has motivated new experimental facilities to create new elements and nuclides at the limits of atomic number and mass. But the small production rates and short lifetimes of superheavy nuclei and their atoms mean that ‘atom-at-a-time’ studies are the only experimental way to probe them. The physical and chemical data obtained so far, augmented by theoretical calculations, indicate significant deviations from extrapolations from lighter elements and isotopes. This situation raises the following question: how much further can one push the limits of the periodic table? In this Review, we describe the major challenges in the field of the superheavy elements and speculate about future directions. Advances in superheavy element studies providing insight into the nuclear and atomic structure and the chemical behaviour of these exotic short-lived systems will help push to the limit of the periodic table of elements and revise the concept of the island of stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
47.80
自引率
0.50%
发文量
122
期刊介绍: Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.
期刊最新文献
Single-molecule FRET for probing nanoscale biomolecular dynamics Mapping the landscape for graphene commercialization 100 years of the Ising model Measuring interactions in a circadian clock A fully connected Ising machine using standard technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1