{"title":"整个里奇克雷斯特地震带的震级变化","authors":"Mohammad Ashtari Jafari","doi":"10.1007/s10950-023-10180-6","DOIUrl":null,"url":null,"abstract":"<div><p>Seismicity parameters can simplify the understanding of the intrinsic complications that arise in the state of stress across the hypocentral areas of interest. We studied variations of the spatial and temporal changes of these parameters by three different methods: maximum curvature, entire magnitude range, and hierarchical space time point process model across the July 2019 Ridgecrest earthquake region. In order to verify the estimations, the Utsu’s test has also been applied. According to the results, seismicity parameters show heterogeneous distribution in this area. The implemented methods provide comparable <i>b</i>-values; however, the <i>b</i>-value displays relatively lower values in northwest and higher values in southeast. Seismicity rate comparison for two periods before and after the M7.1 shock favors change in the <i>b</i>-value. Based on the employed catalog, seismic activity accelerated about half an hour before the M6.4 event. Whereas 2 days before the M7.1 earthquake, seismic activity was low and accelerated approximately 1 day prior to the same event. So there is a clear difference in pre M6.4 and pre M7.1 seismic activity patterns. Moreover, the <i>b</i>-value and magnitude of completeness show decrease before the M7.1 shock, and spatial changes of the <i>b</i>-value expose obvious differences with depth.</p></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Change of seismicity across the Ridgecrest earthquake area\",\"authors\":\"Mohammad Ashtari Jafari\",\"doi\":\"10.1007/s10950-023-10180-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Seismicity parameters can simplify the understanding of the intrinsic complications that arise in the state of stress across the hypocentral areas of interest. We studied variations of the spatial and temporal changes of these parameters by three different methods: maximum curvature, entire magnitude range, and hierarchical space time point process model across the July 2019 Ridgecrest earthquake region. In order to verify the estimations, the Utsu’s test has also been applied. According to the results, seismicity parameters show heterogeneous distribution in this area. The implemented methods provide comparable <i>b</i>-values; however, the <i>b</i>-value displays relatively lower values in northwest and higher values in southeast. Seismicity rate comparison for two periods before and after the M7.1 shock favors change in the <i>b</i>-value. Based on the employed catalog, seismic activity accelerated about half an hour before the M6.4 event. Whereas 2 days before the M7.1 earthquake, seismic activity was low and accelerated approximately 1 day prior to the same event. So there is a clear difference in pre M6.4 and pre M7.1 seismic activity patterns. Moreover, the <i>b</i>-value and magnitude of completeness show decrease before the M7.1 shock, and spatial changes of the <i>b</i>-value expose obvious differences with depth.</p></div>\",\"PeriodicalId\":16994,\"journal\":{\"name\":\"Journal of Seismology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Seismology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10950-023-10180-6\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-023-10180-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
地震参数可以简化对所关注的低中心区域应力状态内在复杂性的理解。我们通过三种不同的方法研究了这些参数在空间和时间上的变化:最大曲率、整个震级范围、2019 年 7 月里奇奎斯特地震区域的分层时空点过程模型。为了验证估算结果,还应用了宇氏检验。结果显示,地震参数在该地区呈现异质性分布。所采用的方法提供的 b 值具有可比性,但西北部的 b 值相对较低,而东南部的 b 值相对较高。M7.1 级地震前后两个时期的地震率比较有利于 b 值的变化。根据所使用的目录,在 M6.4 事件发生前半小时,地震活动加速。而在 M7.1 级地震发生前 2 天,地震活动较低,在同一事件发生前约 1 天,地震活动加速。因此,M6.4 地震前和 M7.1 地震前的地震活动模式存在明显差异。此外,在 M7.1 级地震前,b 值和完整性幅值均有所下降,b 值的空间变化随深度的增加而出现明显差异。
Change of seismicity across the Ridgecrest earthquake area
Seismicity parameters can simplify the understanding of the intrinsic complications that arise in the state of stress across the hypocentral areas of interest. We studied variations of the spatial and temporal changes of these parameters by three different methods: maximum curvature, entire magnitude range, and hierarchical space time point process model across the July 2019 Ridgecrest earthquake region. In order to verify the estimations, the Utsu’s test has also been applied. According to the results, seismicity parameters show heterogeneous distribution in this area. The implemented methods provide comparable b-values; however, the b-value displays relatively lower values in northwest and higher values in southeast. Seismicity rate comparison for two periods before and after the M7.1 shock favors change in the b-value. Based on the employed catalog, seismic activity accelerated about half an hour before the M6.4 event. Whereas 2 days before the M7.1 earthquake, seismic activity was low and accelerated approximately 1 day prior to the same event. So there is a clear difference in pre M6.4 and pre M7.1 seismic activity patterns. Moreover, the b-value and magnitude of completeness show decrease before the M7.1 shock, and spatial changes of the b-value expose obvious differences with depth.
期刊介绍:
Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence.
Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.