{"title":"沿海近岸环境中持续存在的二氧化碳和甲烷热点","authors":"Eero Asmala, Matias Scheinin","doi":"10.1002/lol2.10370","DOIUrl":null,"url":null,"abstract":"<p>Nearshore environments are typically supersaturated with the potent greenhouse gases methane and carbon dioxide, due to intense remineralization of the elevated supply of organic carbon in these systems. These environments are characterized by overlapping biogeochemical gradients and heterogeneous morphology, and the overall spatial variability in nearshore greenhouse gas concentrations remains unclear. We measured surface water partial pressures of carbon dioxide and methane synoptically with water quality parameters in the coastal Baltic Sea, covering two ice-free seasons. The high-frequency flow-through data revealed sites with recurring very high partial pressures of carbon dioxide and methane (i.e., hot spots) scattered around the 50 km × 40 km study area, exceeding overall partial pressure averages by 455 <i>μ</i>atm (CH<sub>4</sub>) and 2396 <i>μ</i>atm (CO<sub>2</sub>). High partial pressures were linked with elevated inputs of allochthonous and autochthonous organic matter, underpinning the major role of organic enrichment of coastal environments in global carbon cycling.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 2","pages":"119-127"},"PeriodicalIF":5.1000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10370","citationCount":"0","resultStr":"{\"title\":\"Persistent hot spots of CO2 and CH4 in coastal nearshore environments\",\"authors\":\"Eero Asmala, Matias Scheinin\",\"doi\":\"10.1002/lol2.10370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nearshore environments are typically supersaturated with the potent greenhouse gases methane and carbon dioxide, due to intense remineralization of the elevated supply of organic carbon in these systems. These environments are characterized by overlapping biogeochemical gradients and heterogeneous morphology, and the overall spatial variability in nearshore greenhouse gas concentrations remains unclear. We measured surface water partial pressures of carbon dioxide and methane synoptically with water quality parameters in the coastal Baltic Sea, covering two ice-free seasons. The high-frequency flow-through data revealed sites with recurring very high partial pressures of carbon dioxide and methane (i.e., hot spots) scattered around the 50 km × 40 km study area, exceeding overall partial pressure averages by 455 <i>μ</i>atm (CH<sub>4</sub>) and 2396 <i>μ</i>atm (CO<sub>2</sub>). High partial pressures were linked with elevated inputs of allochthonous and autochthonous organic matter, underpinning the major role of organic enrichment of coastal environments in global carbon cycling.</p>\",\"PeriodicalId\":18128,\"journal\":{\"name\":\"Limnology and Oceanography Letters\",\"volume\":\"9 2\",\"pages\":\"119-127\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10370\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10370\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10370","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
由于这些系统中有机碳供应增加的强烈再矿化,近岸环境通常被强效温室气体甲烷和二氧化碳过饱和。这些环境具有生物地球化学梯度重叠和形态不均匀的特点,近岸温室气体浓度的总体空间变异性尚不清楚。我们利用水质参数对波罗的海沿岸两个无冰季节的地表水二氧化碳和甲烷分压进行了天气学测量。高频渗流数据显示,在50 km × 40 km研究区域内,二氧化碳和甲烷的分压反复出现非常高的站点(即热点),比总体分压平均值高出455 μatm (CH4)和2396 μatm (CO2)。高分压与外来和本地有机质输入的增加有关,支持了沿海环境有机富集在全球碳循环中的主要作用。
Persistent hot spots of CO2 and CH4 in coastal nearshore environments
Nearshore environments are typically supersaturated with the potent greenhouse gases methane and carbon dioxide, due to intense remineralization of the elevated supply of organic carbon in these systems. These environments are characterized by overlapping biogeochemical gradients and heterogeneous morphology, and the overall spatial variability in nearshore greenhouse gas concentrations remains unclear. We measured surface water partial pressures of carbon dioxide and methane synoptically with water quality parameters in the coastal Baltic Sea, covering two ice-free seasons. The high-frequency flow-through data revealed sites with recurring very high partial pressures of carbon dioxide and methane (i.e., hot spots) scattered around the 50 km × 40 km study area, exceeding overall partial pressure averages by 455 μatm (CH4) and 2396 μatm (CO2). High partial pressures were linked with elevated inputs of allochthonous and autochthonous organic matter, underpinning the major role of organic enrichment of coastal environments in global carbon cycling.
期刊介绍:
Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.