SESPnet:带有关注机制的轻量级航天器姿态估计网络

Q3 Earth and Planetary Sciences Aerospace Systems Pub Date : 2023-12-08 DOI:10.1007/s42401-023-00259-w
Chao Chen, Zhongliang Jing, Han Pan, Xiangming Dun, Jianzhe Huang, Hailei Wu, Shuqing Cao
{"title":"SESPnet:带有关注机制的轻量级航天器姿态估计网络","authors":"Chao Chen,&nbsp;Zhongliang Jing,&nbsp;Han Pan,&nbsp;Xiangming Dun,&nbsp;Jianzhe Huang,&nbsp;Hailei Wu,&nbsp;Shuqing Cao","doi":"10.1007/s42401-023-00259-w","DOIUrl":null,"url":null,"abstract":"<div><p>Spacecraft pose estimation plays an important role in an increasing number of on-orbit services: rendezvous and docking, formation flights, debris removal, and so on. Current solutions achieve excellent performance at the cost of a huge number of model parameters and are not applicable in space environments where computational resources are limited. In this paper, we present the Squeeze-and-Excitation based Spacecraft Pose Network (SESPNet). Our primary objective is to make a trade-off between minimizing model parameters and preserving performance to be more applicable to edge computing in space environments. Our contributions are primarily manifested in three aspects: first, we adapt the lightweight PeleeNet as the backbone network; second, we incorporate the SE attention mechanism to bolster the network’s feature extraction capabilities; third, we adopt the Smooth L1 loss function for position regression, which significantly enhances the accuracy of position estimation.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 1","pages":"1 - 10"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SESPnet: a lightweight network with attention mechanism for spacecraft pose estimation\",\"authors\":\"Chao Chen,&nbsp;Zhongliang Jing,&nbsp;Han Pan,&nbsp;Xiangming Dun,&nbsp;Jianzhe Huang,&nbsp;Hailei Wu,&nbsp;Shuqing Cao\",\"doi\":\"10.1007/s42401-023-00259-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spacecraft pose estimation plays an important role in an increasing number of on-orbit services: rendezvous and docking, formation flights, debris removal, and so on. Current solutions achieve excellent performance at the cost of a huge number of model parameters and are not applicable in space environments where computational resources are limited. In this paper, we present the Squeeze-and-Excitation based Spacecraft Pose Network (SESPNet). Our primary objective is to make a trade-off between minimizing model parameters and preserving performance to be more applicable to edge computing in space environments. Our contributions are primarily manifested in three aspects: first, we adapt the lightweight PeleeNet as the backbone network; second, we incorporate the SE attention mechanism to bolster the network’s feature extraction capabilities; third, we adopt the Smooth L1 loss function for position regression, which significantly enhances the accuracy of position estimation.</p></div>\",\"PeriodicalId\":36309,\"journal\":{\"name\":\"Aerospace Systems\",\"volume\":\"7 1\",\"pages\":\"1 - 10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42401-023-00259-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-023-00259-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

航天器姿态估计在越来越多的在轨服务中发挥着重要作用:交会对接、编队飞行、碎片清除等。目前的解决方案性能卓越,但代价是需要大量的模型参数,不适用于计算资源有限的太空环境。在本文中,我们提出了基于挤压和激励的航天器姿态网络(SESPNet)。我们的主要目标是在最小化模型参数和保持性能之间做出权衡,使其更适用于太空环境中的边缘计算。我们的贡献主要体现在三个方面:第一,我们采用轻量级的 PeleeNet 作为骨干网络;第二,我们采用 SE attention 机制来增强网络的特征提取能力;第三,我们采用 Smooth L1 损失函数进行位置回归,从而显著提高了位置估计的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SESPnet: a lightweight network with attention mechanism for spacecraft pose estimation

Spacecraft pose estimation plays an important role in an increasing number of on-orbit services: rendezvous and docking, formation flights, debris removal, and so on. Current solutions achieve excellent performance at the cost of a huge number of model parameters and are not applicable in space environments where computational resources are limited. In this paper, we present the Squeeze-and-Excitation based Spacecraft Pose Network (SESPNet). Our primary objective is to make a trade-off between minimizing model parameters and preserving performance to be more applicable to edge computing in space environments. Our contributions are primarily manifested in three aspects: first, we adapt the lightweight PeleeNet as the backbone network; second, we incorporate the SE attention mechanism to bolster the network’s feature extraction capabilities; third, we adopt the Smooth L1 loss function for position regression, which significantly enhances the accuracy of position estimation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace Systems
Aerospace Systems Social Sciences-Social Sciences (miscellaneous)
CiteScore
1.80
自引率
0.00%
发文量
53
期刊介绍: Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering. Potential topics include, but are not limited to: Trans-space vehicle systems design and integration Air vehicle systems Space vehicle systems Near-space vehicle systems Aerospace robotics and unmanned system Communication, navigation and surveillance Aerodynamics and aircraft design Dynamics and control Aerospace propulsion Avionics system Opto-electronic system Air traffic management Earth observation Deep space exploration Bionic micro-aircraft/spacecraft Intelligent sensing and Information fusion
期刊最新文献
Efficient machine learning based techniques for fault detection and identification in spacecraft reaction wheel Research on altitude adjustment performance of stratospheric airship based on thermodynamic-dynamic-pressure coupled Contemporary architecture of the satellite Global Ship Tracking (GST) systems, networks and equipment Research on real-time trajectory optimization methods for stratospheric airships based on deep learning Liquid propellant sloshing characteristics and suppression in new-generation space vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1