{"title":"HSPA8 与血红素结合后转变为血红素过氧化物酶催化血红素聚合的作用","authors":"Alok Kumar Pandey, Vishal Trivedi","doi":"10.1007/s10930-023-10167-9","DOIUrl":null,"url":null,"abstract":"<div><p>Hemin, a byproduct of hemoglobin degradation, inflicts oxidative insult to cells. Following its accumulation, several proteins are recruited for heme detoxification with heme oxygenase playing the key role. Chaperones play a protective role primarily by preventing protein degradation and unfolding. They also are known to have miscellaneous secondary roles during similar situations. To discover a secondary role of chaperones during heme stress we studied the role of the chaperone HSPA8 in the detoxification of hemin. In-silico studies indicated that HSPA8 has a well-defined biophoric environment to bind hemin. Through optical difference spectroscopy, we found that HSPA8 binds hemin through its N-terminal domain with a K<sub>d</sub> value of 5.9 ± 0.04 µM and transforms into a hemoprotein. The hemoprotein was tested for exhibiting peroxidase activity using guaiacol as substrate. The complex formed reacts with H<sub>2</sub>O<sub>2</sub> and exhibits classical peroxidase activity with an ability to oxidize aromatic and halide substrates. HSPA8 is dose-dependently catalyzing heme polymerization through its N-terminal domain. The IR results reveal that the polymer formed exhibits structural similarities to β-hematin suggesting its covalent nature. The polymerization mechanism was tested through optical spectroscopy, spin-trap, and activity inhibition experiments. The results suggest that the polymerization occurs through a peroxidase-H<sub>2</sub>O<sub>2</sub> system involving a one-electron transfer mechanism, and the formation of free radical and radical-radical interaction. It highlights a possible role of the HSPA8-hemin complex in exhibiting cytoprotective function during pathological conditions like malaria, sickle cell disease, etc.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 1","pages":"48 - 61"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role Transformation of HSPA8 to Heme-peroxidase After Binding Hemin to Catalyze Heme Polymerization\",\"authors\":\"Alok Kumar Pandey, Vishal Trivedi\",\"doi\":\"10.1007/s10930-023-10167-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hemin, a byproduct of hemoglobin degradation, inflicts oxidative insult to cells. Following its accumulation, several proteins are recruited for heme detoxification with heme oxygenase playing the key role. Chaperones play a protective role primarily by preventing protein degradation and unfolding. They also are known to have miscellaneous secondary roles during similar situations. To discover a secondary role of chaperones during heme stress we studied the role of the chaperone HSPA8 in the detoxification of hemin. In-silico studies indicated that HSPA8 has a well-defined biophoric environment to bind hemin. Through optical difference spectroscopy, we found that HSPA8 binds hemin through its N-terminal domain with a K<sub>d</sub> value of 5.9 ± 0.04 µM and transforms into a hemoprotein. The hemoprotein was tested for exhibiting peroxidase activity using guaiacol as substrate. The complex formed reacts with H<sub>2</sub>O<sub>2</sub> and exhibits classical peroxidase activity with an ability to oxidize aromatic and halide substrates. HSPA8 is dose-dependently catalyzing heme polymerization through its N-terminal domain. The IR results reveal that the polymer formed exhibits structural similarities to β-hematin suggesting its covalent nature. The polymerization mechanism was tested through optical spectroscopy, spin-trap, and activity inhibition experiments. The results suggest that the polymerization occurs through a peroxidase-H<sub>2</sub>O<sub>2</sub> system involving a one-electron transfer mechanism, and the formation of free radical and radical-radical interaction. It highlights a possible role of the HSPA8-hemin complex in exhibiting cytoprotective function during pathological conditions like malaria, sickle cell disease, etc.</p></div>\",\"PeriodicalId\":793,\"journal\":{\"name\":\"The Protein Journal\",\"volume\":\"43 1\",\"pages\":\"48 - 61\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Protein Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10930-023-10167-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Protein Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s10930-023-10167-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Role Transformation of HSPA8 to Heme-peroxidase After Binding Hemin to Catalyze Heme Polymerization
Hemin, a byproduct of hemoglobin degradation, inflicts oxidative insult to cells. Following its accumulation, several proteins are recruited for heme detoxification with heme oxygenase playing the key role. Chaperones play a protective role primarily by preventing protein degradation and unfolding. They also are known to have miscellaneous secondary roles during similar situations. To discover a secondary role of chaperones during heme stress we studied the role of the chaperone HSPA8 in the detoxification of hemin. In-silico studies indicated that HSPA8 has a well-defined biophoric environment to bind hemin. Through optical difference spectroscopy, we found that HSPA8 binds hemin through its N-terminal domain with a Kd value of 5.9 ± 0.04 µM and transforms into a hemoprotein. The hemoprotein was tested for exhibiting peroxidase activity using guaiacol as substrate. The complex formed reacts with H2O2 and exhibits classical peroxidase activity with an ability to oxidize aromatic and halide substrates. HSPA8 is dose-dependently catalyzing heme polymerization through its N-terminal domain. The IR results reveal that the polymer formed exhibits structural similarities to β-hematin suggesting its covalent nature. The polymerization mechanism was tested through optical spectroscopy, spin-trap, and activity inhibition experiments. The results suggest that the polymerization occurs through a peroxidase-H2O2 system involving a one-electron transfer mechanism, and the formation of free radical and radical-radical interaction. It highlights a possible role of the HSPA8-hemin complex in exhibiting cytoprotective function during pathological conditions like malaria, sickle cell disease, etc.
期刊介绍:
The Protein Journal (formerly the Journal of Protein Chemistry) publishes original research work on all aspects of proteins and peptides. These include studies concerned with covalent or three-dimensional structure determination (X-ray, NMR, cryoEM, EPR/ESR, optical methods, etc.), computational aspects of protein structure and function, protein folding and misfolding, assembly, genetics, evolution, proteomics, molecular biology, protein engineering, protein nanotechnology, protein purification and analysis and peptide synthesis, as well as the elucidation and interpretation of the molecular bases of biological activities of proteins and peptides. We accept original research papers, reviews, mini-reviews, hypotheses, opinion papers, and letters to the editor.