Silja L Christensen, N. A. B. Riis, Marcelo Pereyra, J. S. Jørgensen
{"title":"贝叶斯方法用于海底管道缺陷检测 CT 重建","authors":"Silja L Christensen, N. A. B. Riis, Marcelo Pereyra, J. S. Jørgensen","doi":"10.1088/1361-6420/ad1348","DOIUrl":null,"url":null,"abstract":"\n Subsea pipelines can be inspected via 2D cross-sectional X-ray computed tomography (CT). Traditional reconstruction methods produce an image of the pipe's interior that can be post-processed for detection of possible defects. In this paper we propose a novel Bayesian CT reconstruction method with built-in defect detection. We decompose the reconstruction into a sum of two images; one containing the overall pipe structure, and one containing defects, and infer the images simultaneously in a Gibbs scheme. Our method requires that prior information about the two images is very distinct, i.e. the first image should contain the large-scale and layered pipe structure, and the second image should contain small, coherent defects. We demonstrate our methodology with numerical experiments using synthetic and real CT data from scans of subsea pipes in cases with full and limited data. Experiments demonstrate the effectiveness of the proposed method in various data settings, with reconstruction quality comparable to existing techniques, while also providing defect detection with uncertainty quantification.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"19 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian approach for CT reconstruction with defect detection for subsea pipelines\",\"authors\":\"Silja L Christensen, N. A. B. Riis, Marcelo Pereyra, J. S. Jørgensen\",\"doi\":\"10.1088/1361-6420/ad1348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Subsea pipelines can be inspected via 2D cross-sectional X-ray computed tomography (CT). Traditional reconstruction methods produce an image of the pipe's interior that can be post-processed for detection of possible defects. In this paper we propose a novel Bayesian CT reconstruction method with built-in defect detection. We decompose the reconstruction into a sum of two images; one containing the overall pipe structure, and one containing defects, and infer the images simultaneously in a Gibbs scheme. Our method requires that prior information about the two images is very distinct, i.e. the first image should contain the large-scale and layered pipe structure, and the second image should contain small, coherent defects. We demonstrate our methodology with numerical experiments using synthetic and real CT data from scans of subsea pipes in cases with full and limited data. Experiments demonstrate the effectiveness of the proposed method in various data settings, with reconstruction quality comparable to existing techniques, while also providing defect detection with uncertainty quantification.\",\"PeriodicalId\":50275,\"journal\":{\"name\":\"Inverse Problems\",\"volume\":\"19 9\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad1348\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad1348","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Bayesian approach for CT reconstruction with defect detection for subsea pipelines
Subsea pipelines can be inspected via 2D cross-sectional X-ray computed tomography (CT). Traditional reconstruction methods produce an image of the pipe's interior that can be post-processed for detection of possible defects. In this paper we propose a novel Bayesian CT reconstruction method with built-in defect detection. We decompose the reconstruction into a sum of two images; one containing the overall pipe structure, and one containing defects, and infer the images simultaneously in a Gibbs scheme. Our method requires that prior information about the two images is very distinct, i.e. the first image should contain the large-scale and layered pipe structure, and the second image should contain small, coherent defects. We demonstrate our methodology with numerical experiments using synthetic and real CT data from scans of subsea pipes in cases with full and limited data. Experiments demonstrate the effectiveness of the proposed method in various data settings, with reconstruction quality comparable to existing techniques, while also providing defect detection with uncertainty quantification.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.