Ahlem Benmerabet, Abdelaziz Bouhadiba, Y. Belhocine, S. Rahali, N. Sbei, M. Seydou, Ihsene Boucheriha, Imane Omeiri, Ibtissem Meriem Assaba
{"title":"作为识别宿主的β-环糊精和羟丙基-β-环糊精与三氯乙烯络合的 DFT 研究","authors":"Ahlem Benmerabet, Abdelaziz Bouhadiba, Y. Belhocine, S. Rahali, N. Sbei, M. Seydou, Ihsene Boucheriha, Imane Omeiri, Ibtissem Meriem Assaba","doi":"10.3390/atoms11120153","DOIUrl":null,"url":null,"abstract":"In this investigation, the potential use of native β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) as encapsulating agents for trichloroethylene (TCE) was assessed. Various quantum chemical parameters, including HOMO, LUMO, and HOMO–LUMO gap, were calculated. The docking process was examined by considering different initial configurations. The complexation energies were calculated at the molecular level using DFT/BLYP-D4 and PBEh-3c calculations to gain insight into TCE encapsulation within the β-CD and HP-β-CD cavities. We used the independent gradient model (IGM) and extended charge decomposition analysis (ECDA) approaches to examine non-covalent interactions and charge transfer within TCE@β-CD and TCE@HP-β-CD complexes. The calculated thermodynamic data and complexation energies exhibited negative values for both considered complexes, indicating a favorable complexation process. Weak Van der Waals intermolecular interactions were the main driving forces in stabilizing the formed complex. Additionally, Monte Carlo simulations were conducted for a better understanding of the inclusion process. Our results provide evidence for the use of β-CD and HP-β-CD as suitable macrocyclic hosts for complexing trichloroethylene.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":"43 16","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT Investigation on the Complexation of β-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin as Recognition Hosts with Trichloroethylene\",\"authors\":\"Ahlem Benmerabet, Abdelaziz Bouhadiba, Y. Belhocine, S. Rahali, N. Sbei, M. Seydou, Ihsene Boucheriha, Imane Omeiri, Ibtissem Meriem Assaba\",\"doi\":\"10.3390/atoms11120153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this investigation, the potential use of native β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) as encapsulating agents for trichloroethylene (TCE) was assessed. Various quantum chemical parameters, including HOMO, LUMO, and HOMO–LUMO gap, were calculated. The docking process was examined by considering different initial configurations. The complexation energies were calculated at the molecular level using DFT/BLYP-D4 and PBEh-3c calculations to gain insight into TCE encapsulation within the β-CD and HP-β-CD cavities. We used the independent gradient model (IGM) and extended charge decomposition analysis (ECDA) approaches to examine non-covalent interactions and charge transfer within TCE@β-CD and TCE@HP-β-CD complexes. The calculated thermodynamic data and complexation energies exhibited negative values for both considered complexes, indicating a favorable complexation process. Weak Van der Waals intermolecular interactions were the main driving forces in stabilizing the formed complex. Additionally, Monte Carlo simulations were conducted for a better understanding of the inclusion process. Our results provide evidence for the use of β-CD and HP-β-CD as suitable macrocyclic hosts for complexing trichloroethylene.\",\"PeriodicalId\":8629,\"journal\":{\"name\":\"Atoms\",\"volume\":\"43 16\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atoms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/atoms11120153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11120153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
DFT Investigation on the Complexation of β-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin as Recognition Hosts with Trichloroethylene
In this investigation, the potential use of native β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) as encapsulating agents for trichloroethylene (TCE) was assessed. Various quantum chemical parameters, including HOMO, LUMO, and HOMO–LUMO gap, were calculated. The docking process was examined by considering different initial configurations. The complexation energies were calculated at the molecular level using DFT/BLYP-D4 and PBEh-3c calculations to gain insight into TCE encapsulation within the β-CD and HP-β-CD cavities. We used the independent gradient model (IGM) and extended charge decomposition analysis (ECDA) approaches to examine non-covalent interactions and charge transfer within TCE@β-CD and TCE@HP-β-CD complexes. The calculated thermodynamic data and complexation energies exhibited negative values for both considered complexes, indicating a favorable complexation process. Weak Van der Waals intermolecular interactions were the main driving forces in stabilizing the formed complex. Additionally, Monte Carlo simulations were conducted for a better understanding of the inclusion process. Our results provide evidence for the use of β-CD and HP-β-CD as suitable macrocyclic hosts for complexing trichloroethylene.
AtomsPhysics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍:
Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions