Xinxing Zhang, Kaiyu Dai, Bing Zhang, Leigang Wang, Jianbing Yang
{"title":"利用复合摩擦补偿对具有多重干扰的电液位置伺服系统进行自适应反步进-扩展状态观测器控制","authors":"Xinxing Zhang, Kaiyu Dai, Bing Zhang, Leigang Wang, Jianbing Yang","doi":"10.1177/09596518231209222","DOIUrl":null,"url":null,"abstract":"Multiple disturbances coming from friction, matched, and mismatched uncertainties make it difficult for electrohydraulic servosystems to obtain the satisfactory position-tracking performance. The existing adaptive backstepping controllers fail to effectively distinguish the difference of disturbance between the mechanical subsystem and the hydraulic subsystem, which limits the compensation effect of multiple disturbances, especially for friction nonlinearity. Therefore, the adaptive backstepping-extended state observer position-tracking controller combined with compound friction compensation is proposed to simultaneously compensate for the fast-varying friction disturbance of a mechanical subsystem and the slow-varying matched disturbance of a hydraulic subsystem. The extended state observer algorithm is integrated into the adaptive backstepping controller to suppress the null bias of the average tracking error. The compound friction compensation includes a LuGre model-based compensation and a high-order disturbance observer, which can improve the tracking performance of system and avoids the excessive gain of observer. A large number of comparative experiments are conducted to verify the effective of the proposed controller.","PeriodicalId":20638,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","volume":"47 20","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive backstepping-extended state observer control for electrohydraulic position servo systems with multiple disturbances using the compound friction compensation\",\"authors\":\"Xinxing Zhang, Kaiyu Dai, Bing Zhang, Leigang Wang, Jianbing Yang\",\"doi\":\"10.1177/09596518231209222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple disturbances coming from friction, matched, and mismatched uncertainties make it difficult for electrohydraulic servosystems to obtain the satisfactory position-tracking performance. The existing adaptive backstepping controllers fail to effectively distinguish the difference of disturbance between the mechanical subsystem and the hydraulic subsystem, which limits the compensation effect of multiple disturbances, especially for friction nonlinearity. Therefore, the adaptive backstepping-extended state observer position-tracking controller combined with compound friction compensation is proposed to simultaneously compensate for the fast-varying friction disturbance of a mechanical subsystem and the slow-varying matched disturbance of a hydraulic subsystem. The extended state observer algorithm is integrated into the adaptive backstepping controller to suppress the null bias of the average tracking error. The compound friction compensation includes a LuGre model-based compensation and a high-order disturbance observer, which can improve the tracking performance of system and avoids the excessive gain of observer. A large number of comparative experiments are conducted to verify the effective of the proposed controller.\",\"PeriodicalId\":20638,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"volume\":\"47 20\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/09596518231209222\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/09596518231209222","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Adaptive backstepping-extended state observer control for electrohydraulic position servo systems with multiple disturbances using the compound friction compensation
Multiple disturbances coming from friction, matched, and mismatched uncertainties make it difficult for electrohydraulic servosystems to obtain the satisfactory position-tracking performance. The existing adaptive backstepping controllers fail to effectively distinguish the difference of disturbance between the mechanical subsystem and the hydraulic subsystem, which limits the compensation effect of multiple disturbances, especially for friction nonlinearity. Therefore, the adaptive backstepping-extended state observer position-tracking controller combined with compound friction compensation is proposed to simultaneously compensate for the fast-varying friction disturbance of a mechanical subsystem and the slow-varying matched disturbance of a hydraulic subsystem. The extended state observer algorithm is integrated into the adaptive backstepping controller to suppress the null bias of the average tracking error. The compound friction compensation includes a LuGre model-based compensation and a high-order disturbance observer, which can improve the tracking performance of system and avoids the excessive gain of observer. A large number of comparative experiments are conducted to verify the effective of the proposed controller.
期刊介绍:
Systems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering refleSystems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering reflects this diversity by giving prominence to experimental application and industrial studies.
"It is clear from the feedback we receive that the Journal is now recognised as one of the leaders in its field. We are particularly interested in highlighting experimental applications and industrial studies, but also new theoretical developments which are likely to provide the foundation for future applications. In 2009, we launched a new Series of "Forward Look" papers written by leading researchers and practitioners. These short articles are intended to be provocative and help to set the agenda for future developments. We continue to strive for fast decision times and minimum delays in the production processes." Professor Cliff Burrows - University of Bath, UK
This journal is a member of the Committee on Publication Ethics (COPE).cts this diversity by giving prominence to experimental application and industrial studies.