Eniz Museljic, K. Roppert, L. Domenig, Alice Reinbacher Köstinger, M. Kaltenbacher
{"title":"利用自动微分和神经网络识别基于能量的滞后模型参数","authors":"Eniz Museljic, K. Roppert, L. Domenig, Alice Reinbacher Köstinger, M. Kaltenbacher","doi":"10.3233/jae-230107","DOIUrl":null,"url":null,"abstract":"This paper is about the parameter identification of an energy based hysteresis model from measurements by employing automatic differentiation and neural networks. We first introduce the energy based hysteresis model and the parameters which are to be identified. Then we show how the model can benefit from automatic differentiation. After that we incorporate a parametrization of the energy based hysteresis model via distribution functions and identify the parameters of the distribution function. Then, the hysteresis model is sampled and the generated datasets are used to train neural networks to predict the hysteresis parameters. The described methods are tested and verified on synthetic as well as measurement data.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Employing automatic differentiation and neural networks for parameter identification of an energy based hysteresis model\",\"authors\":\"Eniz Museljic, K. Roppert, L. Domenig, Alice Reinbacher Köstinger, M. Kaltenbacher\",\"doi\":\"10.3233/jae-230107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is about the parameter identification of an energy based hysteresis model from measurements by employing automatic differentiation and neural networks. We first introduce the energy based hysteresis model and the parameters which are to be identified. Then we show how the model can benefit from automatic differentiation. After that we incorporate a parametrization of the energy based hysteresis model via distribution functions and identify the parameters of the distribution function. Then, the hysteresis model is sampled and the generated datasets are used to train neural networks to predict the hysteresis parameters. The described methods are tested and verified on synthetic as well as measurement data.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-230107\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230107","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Employing automatic differentiation and neural networks for parameter identification of an energy based hysteresis model
This paper is about the parameter identification of an energy based hysteresis model from measurements by employing automatic differentiation and neural networks. We first introduce the energy based hysteresis model and the parameters which are to be identified. Then we show how the model can benefit from automatic differentiation. After that we incorporate a parametrization of the energy based hysteresis model via distribution functions and identify the parameters of the distribution function. Then, the hysteresis model is sampled and the generated datasets are used to train neural networks to predict the hysteresis parameters. The described methods are tested and verified on synthetic as well as measurement data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.