{"title":"从大规模移动数据中获得可操作的城市时空动态描述符:里斯本市案例研究","authors":"Miguel G. Silva, Sara C. Madeira, Rui Henriques","doi":"10.1177/23998083231219048","DOIUrl":null,"url":null,"abstract":"Mobile phones share location records, offering the opportunity to monitor and understand emerging population dynamics in urban centers. With the aim of supporting urban planning, this study introduces a scalable methodology grounded on extracting and organizing spatiotemporal statistics from decomposed population density data. The proposed methodology serves three major purposes: (i) assess the predictability of spatiotemporal citizen density patterns; (ii) detect emerging spatiotemporal trends in population density; and (iii) uncover multi-level seasonality patterns with guarantees of actionability. Additionally, it makes available an open-access tool for deploying the proposed methodology and analyzing mobile phone network data with easy-to-use spatiotemporal visualization and navigation facilities. The results obtained from real-world, large-scale mobile data in Lisbon, Portugal, demonstrate the effectiveness and validity of the proposed methodology in extracting actionable statistics in linear time to guide both tactic and strategic urban planning.","PeriodicalId":11863,"journal":{"name":"Environment and Planning B: Urban Analytics and City Science","volume":"129 27","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Actionable descriptors of spatiotemporal urban dynamics from large-scale mobile data: A case study in Lisbon city\",\"authors\":\"Miguel G. Silva, Sara C. Madeira, Rui Henriques\",\"doi\":\"10.1177/23998083231219048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile phones share location records, offering the opportunity to monitor and understand emerging population dynamics in urban centers. With the aim of supporting urban planning, this study introduces a scalable methodology grounded on extracting and organizing spatiotemporal statistics from decomposed population density data. The proposed methodology serves three major purposes: (i) assess the predictability of spatiotemporal citizen density patterns; (ii) detect emerging spatiotemporal trends in population density; and (iii) uncover multi-level seasonality patterns with guarantees of actionability. Additionally, it makes available an open-access tool for deploying the proposed methodology and analyzing mobile phone network data with easy-to-use spatiotemporal visualization and navigation facilities. The results obtained from real-world, large-scale mobile data in Lisbon, Portugal, demonstrate the effectiveness and validity of the proposed methodology in extracting actionable statistics in linear time to guide both tactic and strategic urban planning.\",\"PeriodicalId\":11863,\"journal\":{\"name\":\"Environment and Planning B: Urban Analytics and City Science\",\"volume\":\"129 27\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment and Planning B: Urban Analytics and City Science\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1177/23998083231219048\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Planning B: Urban Analytics and City Science","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1177/23998083231219048","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Actionable descriptors of spatiotemporal urban dynamics from large-scale mobile data: A case study in Lisbon city
Mobile phones share location records, offering the opportunity to monitor and understand emerging population dynamics in urban centers. With the aim of supporting urban planning, this study introduces a scalable methodology grounded on extracting and organizing spatiotemporal statistics from decomposed population density data. The proposed methodology serves three major purposes: (i) assess the predictability of spatiotemporal citizen density patterns; (ii) detect emerging spatiotemporal trends in population density; and (iii) uncover multi-level seasonality patterns with guarantees of actionability. Additionally, it makes available an open-access tool for deploying the proposed methodology and analyzing mobile phone network data with easy-to-use spatiotemporal visualization and navigation facilities. The results obtained from real-world, large-scale mobile data in Lisbon, Portugal, demonstrate the effectiveness and validity of the proposed methodology in extracting actionable statistics in linear time to guide both tactic and strategic urban planning.