用于乳腺癌 CD8 靶向和体内细胞毒性 T 细胞成像的短波激发纳米探针

IF 4 Q2 ENGINEERING, BIOMEDICAL Advanced Nanobiomed Research Pub Date : 2023-12-05 DOI:10.1002/anbr.202300092
Jay V. Shah, Jake N. Siebert, Xinyu Zhao, Shuqing He, Richard E. Riman, Mei Chee Tan, Mark C. Pierce, Edmund C. Lattime, Vidya Ganapathy, Prabhas V. Moghe
{"title":"用于乳腺癌 CD8 靶向和体内细胞毒性 T 细胞成像的短波激发纳米探针","authors":"Jay V. Shah,&nbsp;Jake N. Siebert,&nbsp;Xinyu Zhao,&nbsp;Shuqing He,&nbsp;Richard E. Riman,&nbsp;Mei Chee Tan,&nbsp;Mark C. Pierce,&nbsp;Edmund C. Lattime,&nbsp;Vidya Ganapathy,&nbsp;Prabhas V. Moghe","doi":"10.1002/anbr.202300092","DOIUrl":null,"url":null,"abstract":"<p>Checkpoint immunotherapy has made great strides in the treatment of solid tumors, but many patients do not respond to immune checkpoint inhibitors. Identification of tumor-infiltrating cytotoxic T cells (CTLs) has the potential to stratify patients and monitor immunotherapy responses. In this study, the design of cluster of differentiation (CD8<sup>+</sup>) T cell-targeted nanoprobes that emit shortwave infrared (SWIR) light in the second tissue-transparent window for noninvasive, real-time imaging of CTLs in murine models of breast cancer is presented. SWIR-emitting rare-earth nanoparticles encapsulated in human serum albumin are conjugated with anti-CD8α to target CTLs with high specificity. CTL targeting is validated in vitro through binding of nanoprobes to primary mouse CTLs. The potential for the use of SWIR fluorescence intensity to determine CTL presence is validated in two syngeneic mammary fat pad tumor models, EMT6 and 4T1, which differ in immune infiltration. SWIR imaging using CD8-targeted nanoprobes successfully identifies the presence of CTLs in the more immunogenic EMT6 model, while imaging confirms the lack of substantial immune infiltration in the nonimmunogenic 4T1 model. In this work, the opportunity for SWIR imaging using CD8-targeted nanoprobes to assess CTL infiltration in tumors for the stratification and monitoring of responders to checkpoint immunotherapy is highlighted.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 2","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300092","citationCount":"0","resultStr":"{\"title\":\"Shortwave-Infrared-Emitting Nanoprobes for CD8 Targeting and In Vivo Imaging of Cytotoxic T Cells in Breast Cancer\",\"authors\":\"Jay V. Shah,&nbsp;Jake N. Siebert,&nbsp;Xinyu Zhao,&nbsp;Shuqing He,&nbsp;Richard E. Riman,&nbsp;Mei Chee Tan,&nbsp;Mark C. Pierce,&nbsp;Edmund C. Lattime,&nbsp;Vidya Ganapathy,&nbsp;Prabhas V. Moghe\",\"doi\":\"10.1002/anbr.202300092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Checkpoint immunotherapy has made great strides in the treatment of solid tumors, but many patients do not respond to immune checkpoint inhibitors. Identification of tumor-infiltrating cytotoxic T cells (CTLs) has the potential to stratify patients and monitor immunotherapy responses. In this study, the design of cluster of differentiation (CD8<sup>+</sup>) T cell-targeted nanoprobes that emit shortwave infrared (SWIR) light in the second tissue-transparent window for noninvasive, real-time imaging of CTLs in murine models of breast cancer is presented. SWIR-emitting rare-earth nanoparticles encapsulated in human serum albumin are conjugated with anti-CD8α to target CTLs with high specificity. CTL targeting is validated in vitro through binding of nanoprobes to primary mouse CTLs. The potential for the use of SWIR fluorescence intensity to determine CTL presence is validated in two syngeneic mammary fat pad tumor models, EMT6 and 4T1, which differ in immune infiltration. SWIR imaging using CD8-targeted nanoprobes successfully identifies the presence of CTLs in the more immunogenic EMT6 model, while imaging confirms the lack of substantial immune infiltration in the nonimmunogenic 4T1 model. In this work, the opportunity for SWIR imaging using CD8-targeted nanoprobes to assess CTL infiltration in tumors for the stratification and monitoring of responders to checkpoint immunotherapy is highlighted.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300092\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

检查点免疫疗法在治疗实体瘤方面取得了很大进展,但许多患者对免疫检查点抑制剂没有反应。肿瘤浸润性细胞毒性T细胞(ctl)的鉴定具有对患者进行分层和监测免疫治疗反应的潜力。在这项研究中,研究人员设计了一种CD8+ T细胞靶向纳米探针,该探针在第二组织透明窗口发射短波红外(SWIR)光,用于对小鼠乳腺癌模型中的ctl进行无创实时成像。SWIR发射的稀土纳米颗粒包被在人血清白蛋白中,与抗CD8α结合,以高特异性靶向ctl。通过纳米探针与小鼠原代CTL的结合,体外验证了CTL靶向性。在两种免疫浸润不同的同基因乳腺脂肪垫肿瘤模型EMT6和4T1中,SWIR荧光强度测定CTL存在的潜力得到了验证。使用CD8靶向纳米探针的SWIR成像成功地识别了免疫原性更强的EMT6模型中ctl的存在,而成像证实了非免疫原性4T1模型中缺乏大量免疫浸润。在这项工作中,强调了使用CD8靶向纳米探针进行SWIR成像以评估肿瘤中CTL浸润的机会,以分层和监测对检查点免疫治疗的应答者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shortwave-Infrared-Emitting Nanoprobes for CD8 Targeting and In Vivo Imaging of Cytotoxic T Cells in Breast Cancer

Checkpoint immunotherapy has made great strides in the treatment of solid tumors, but many patients do not respond to immune checkpoint inhibitors. Identification of tumor-infiltrating cytotoxic T cells (CTLs) has the potential to stratify patients and monitor immunotherapy responses. In this study, the design of cluster of differentiation (CD8+) T cell-targeted nanoprobes that emit shortwave infrared (SWIR) light in the second tissue-transparent window for noninvasive, real-time imaging of CTLs in murine models of breast cancer is presented. SWIR-emitting rare-earth nanoparticles encapsulated in human serum albumin are conjugated with anti-CD8α to target CTLs with high specificity. CTL targeting is validated in vitro through binding of nanoprobes to primary mouse CTLs. The potential for the use of SWIR fluorescence intensity to determine CTL presence is validated in two syngeneic mammary fat pad tumor models, EMT6 and 4T1, which differ in immune infiltration. SWIR imaging using CD8-targeted nanoprobes successfully identifies the presence of CTLs in the more immunogenic EMT6 model, while imaging confirms the lack of substantial immune infiltration in the nonimmunogenic 4T1 model. In this work, the opportunity for SWIR imaging using CD8-targeted nanoprobes to assess CTL infiltration in tumors for the stratification and monitoring of responders to checkpoint immunotherapy is highlighted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
期刊最新文献
Masthead Real-Time Nanoscale Bacterial Detection Utilizing a 1DZnO Optical Nanobiosensor Cover Picture Masthead Advances in Additive Manufactured Scaffolds Mimicking the Osteochondral Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1