Chen Xie, Qiansha Luo, Yuxuan Zhang, Fang Qin, Yingfeng Tu, Kun Liu
{"title":"用于口服给药的微型/纳米马达:从设计到应用","authors":"Chen Xie, Qiansha Luo, Yuxuan Zhang, Fang Qin, Yingfeng Tu, Kun Liu","doi":"10.1002/anbr.202300057","DOIUrl":null,"url":null,"abstract":"<p>Oral administration, as a traditional approach of taking therapeutic drugs, is easily accepted by patients due to its convenience and compliance. However, the harsh digestive environment and mucosa-epithelial cell barriers limit the absorption of drugs through the oral route, particularly for biomacromolecules such as protein, peptide, or nucleic acid drugs. To address this issue, active carriers such as micro/nanomotors and mechanical devices have been engineered as novel delivery systems that are capable of converting various energy into mechanical force. The active delivery of these carriers holds promise for overcoming absorptive barriers and improving drug delivery efficiency, making them an attractive option for precision medicine applications that include drug delivery, gene and cell therapy, biopsy, tissue penetration, intracellular delivery, and biosensing. This article presents an overview of the progress and challenges associated with orally delivering macromolecular drugs, as well as strategies to enhance drug absorption. Additionally, it discusses recent developments and potential applications of active carriers in drug delivery and related fields, which may provide inspiration for future research.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 2","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300057","citationCount":"0","resultStr":"{\"title\":\"Micro/Nanomotors for Oral Delivery of Drugs: From Design to Application\",\"authors\":\"Chen Xie, Qiansha Luo, Yuxuan Zhang, Fang Qin, Yingfeng Tu, Kun Liu\",\"doi\":\"10.1002/anbr.202300057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oral administration, as a traditional approach of taking therapeutic drugs, is easily accepted by patients due to its convenience and compliance. However, the harsh digestive environment and mucosa-epithelial cell barriers limit the absorption of drugs through the oral route, particularly for biomacromolecules such as protein, peptide, or nucleic acid drugs. To address this issue, active carriers such as micro/nanomotors and mechanical devices have been engineered as novel delivery systems that are capable of converting various energy into mechanical force. The active delivery of these carriers holds promise for overcoming absorptive barriers and improving drug delivery efficiency, making them an attractive option for precision medicine applications that include drug delivery, gene and cell therapy, biopsy, tissue penetration, intracellular delivery, and biosensing. This article presents an overview of the progress and challenges associated with orally delivering macromolecular drugs, as well as strategies to enhance drug absorption. Additionally, it discusses recent developments and potential applications of active carriers in drug delivery and related fields, which may provide inspiration for future research.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300057\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Micro/Nanomotors for Oral Delivery of Drugs: From Design to Application
Oral administration, as a traditional approach of taking therapeutic drugs, is easily accepted by patients due to its convenience and compliance. However, the harsh digestive environment and mucosa-epithelial cell barriers limit the absorption of drugs through the oral route, particularly for biomacromolecules such as protein, peptide, or nucleic acid drugs. To address this issue, active carriers such as micro/nanomotors and mechanical devices have been engineered as novel delivery systems that are capable of converting various energy into mechanical force. The active delivery of these carriers holds promise for overcoming absorptive barriers and improving drug delivery efficiency, making them an attractive option for precision medicine applications that include drug delivery, gene and cell therapy, biopsy, tissue penetration, intracellular delivery, and biosensing. This article presents an overview of the progress and challenges associated with orally delivering macromolecular drugs, as well as strategies to enhance drug absorption. Additionally, it discusses recent developments and potential applications of active carriers in drug delivery and related fields, which may provide inspiration for future research.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.