玉米中杂草物种的性状对耕作和种植制度的反应

IF 3.5 Q1 AGRONOMY Frontiers in Agronomy Pub Date : 2023-12-04 DOI:10.3389/fagro.2023.1284887
Johanna Bensch, H. Pannwitt, Bärbel Gerowitt
{"title":"玉米中杂草物种的性状对耕作和种植制度的反应","authors":"Johanna Bensch, H. Pannwitt, Bärbel Gerowitt","doi":"10.3389/fagro.2023.1284887","DOIUrl":null,"url":null,"abstract":"Arable weeds adapt to any changes in disturbance and management. On arable fields, tilling disturbs the soil, while cropping practices like rotation, pesticide use, fertilizer use, and the use of subsidiary crops characterize the management of the field. On a species level, weeds adapt in their abundance and composition. The species have certain traits to use the on-site resources best. Our objective was to investigate if traits beyond just species describe the adaptation of weeds to tillage and cropping systems. Therefore, we present a use case of weeds on fields cropped with maize in Germany.Over 2 years, we conducted a nationwide weed survey on 577 maize fields. On each field, the abundance of each weed species was counted on 10 randomly sampled square plots of 0.1 m² not treated with herbicides at the fourth to eighth leaf stages of the maize. Weed species frequent on at least 5% of the fields were assigned traits. Traits were taken from published updated databases. We interviewed all farmers about the management practices of their fields.The management practice data identified three management clusters of tillage and cropping sequence on maize fields. The standard system so far is a management system characterized by inversion tillage and maize cropped in rotations (“Traditional”). The two transformation systems are maize cropped in rotations but with non-inversion tillage as the method of soil disturbance (“Conservational”) and maize cropped continuously regardless of the tillage system (“Monoculture”). Ordination techniques showed that both weed species and traits are assigned to these management systems. Traditional disfavored weed species with a greater plant height. Conservational selected dicot weed species with a high seed weight and a long flowering duration. Monoculture mainly filtered monocot weed species and favored weeds that germinate in spring.Our study describes weed responses on transformations of maize cropping in tillage and cropping systems on both the species and the trait level. This application expresses the importance and value of collecting weed surveys with field management data on a geographically widespread and repeated timescale.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traits of weed species present in maize respond to tillage and cropping systems\",\"authors\":\"Johanna Bensch, H. Pannwitt, Bärbel Gerowitt\",\"doi\":\"10.3389/fagro.2023.1284887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arable weeds adapt to any changes in disturbance and management. On arable fields, tilling disturbs the soil, while cropping practices like rotation, pesticide use, fertilizer use, and the use of subsidiary crops characterize the management of the field. On a species level, weeds adapt in their abundance and composition. The species have certain traits to use the on-site resources best. Our objective was to investigate if traits beyond just species describe the adaptation of weeds to tillage and cropping systems. Therefore, we present a use case of weeds on fields cropped with maize in Germany.Over 2 years, we conducted a nationwide weed survey on 577 maize fields. On each field, the abundance of each weed species was counted on 10 randomly sampled square plots of 0.1 m² not treated with herbicides at the fourth to eighth leaf stages of the maize. Weed species frequent on at least 5% of the fields were assigned traits. Traits were taken from published updated databases. We interviewed all farmers about the management practices of their fields.The management practice data identified three management clusters of tillage and cropping sequence on maize fields. The standard system so far is a management system characterized by inversion tillage and maize cropped in rotations (“Traditional”). The two transformation systems are maize cropped in rotations but with non-inversion tillage as the method of soil disturbance (“Conservational”) and maize cropped continuously regardless of the tillage system (“Monoculture”). Ordination techniques showed that both weed species and traits are assigned to these management systems. Traditional disfavored weed species with a greater plant height. Conservational selected dicot weed species with a high seed weight and a long flowering duration. Monoculture mainly filtered monocot weed species and favored weeds that germinate in spring.Our study describes weed responses on transformations of maize cropping in tillage and cropping systems on both the species and the trait level. This application expresses the importance and value of collecting weed surveys with field management data on a geographically widespread and repeated timescale.\",\"PeriodicalId\":34038,\"journal\":{\"name\":\"Frontiers in Agronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Agronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fagro.2023.1284887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Agronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fagro.2023.1284887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

可耕地杂草能适应任何干扰和管理的变化。在耕地上,耕作会破坏土壤,而轮作、使用农药、使用化肥和使用辅助作物等耕作方式则是农田管理的特点。在物种水平上,杂草适应了它们的丰度和组成。该物种具有一定的特征,可以最好地利用现场资源。我们的目的是调查物种之外的特征是否描述了杂草对耕作和种植系统的适应。因此,我们提出了一个在德国种植玉米的田地上杂草的用例。在两年多的时间里,我们对全国577块玉米田进行了杂草调查。在每个地块上,随机抽取10个0.1 m²的方形地块,在玉米的第4至第8叶期未使用除草剂,对每种杂草的丰度进行计数。在至少5%的田地中经常出现的杂草物种被赋予了性状。性状取自已发表的更新数据库。我们采访了所有的农民关于他们田地的管理实践。管理实践数据确定了玉米田耕作和种植顺序的三个管理集群。到目前为止,标准系统是一种以翻转耕作和玉米轮作(“传统”)为特征的管理系统。两种转化系统分别是轮作玉米,但以不反转耕作作为土壤扰动的方法(“保护性”)和不考虑耕作制度而连续种植玉米(“单作”)。排序技术表明,杂草的种类和性状都被分配到这些管理系统中。传统不受欢迎的杂草品种具有更高的植物高度。选择了种子重大、花期长的双科杂草。单一栽培主要过滤单子叶杂草和春天发芽的杂草。本研究从品种和性状两个层面描述了杂草对玉米耕作和种植制度变化的响应。该应用程序表达了在地理上广泛和重复的时间尺度上收集现场管理数据的杂草调查的重要性和价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Traits of weed species present in maize respond to tillage and cropping systems
Arable weeds adapt to any changes in disturbance and management. On arable fields, tilling disturbs the soil, while cropping practices like rotation, pesticide use, fertilizer use, and the use of subsidiary crops characterize the management of the field. On a species level, weeds adapt in their abundance and composition. The species have certain traits to use the on-site resources best. Our objective was to investigate if traits beyond just species describe the adaptation of weeds to tillage and cropping systems. Therefore, we present a use case of weeds on fields cropped with maize in Germany.Over 2 years, we conducted a nationwide weed survey on 577 maize fields. On each field, the abundance of each weed species was counted on 10 randomly sampled square plots of 0.1 m² not treated with herbicides at the fourth to eighth leaf stages of the maize. Weed species frequent on at least 5% of the fields were assigned traits. Traits were taken from published updated databases. We interviewed all farmers about the management practices of their fields.The management practice data identified three management clusters of tillage and cropping sequence on maize fields. The standard system so far is a management system characterized by inversion tillage and maize cropped in rotations (“Traditional”). The two transformation systems are maize cropped in rotations but with non-inversion tillage as the method of soil disturbance (“Conservational”) and maize cropped continuously regardless of the tillage system (“Monoculture”). Ordination techniques showed that both weed species and traits are assigned to these management systems. Traditional disfavored weed species with a greater plant height. Conservational selected dicot weed species with a high seed weight and a long flowering duration. Monoculture mainly filtered monocot weed species and favored weeds that germinate in spring.Our study describes weed responses on transformations of maize cropping in tillage and cropping systems on both the species and the trait level. This application expresses the importance and value of collecting weed surveys with field management data on a geographically widespread and repeated timescale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Agronomy
Frontiers in Agronomy Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
4.80
自引率
0.00%
发文量
123
审稿时长
13 weeks
期刊最新文献
Benefits of Canavalia ensiformis, arbuscular mycorrhizal fungi, and mineral fertilizer management in tobacco production Weed resistance prediction: a random forest analysis based on field histories Nitrogen and phosphorus mineralization dynamics in human excreta-derived fertilizers Exploring adaptation strategies for smallholder farmers in dryland farming systems and impact on pearl millet production under climate change in West Africa Effect of rainfall interception and resting period on the soil seed bank
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1