Amr Abou-Senna, Ghada AlNemer, Yongchun Zhou, Boping Tian
{"title":"有列维跃迁的随机受电弓模型的扩散分步截断欧拉-Maruyama 方法的收敛率","authors":"Amr Abou-Senna, Ghada AlNemer, Yongchun Zhou, Boping Tian","doi":"10.3390/fractalfract7120861","DOIUrl":null,"url":null,"abstract":"This paper studies the stochastic pantograph model, which is considered a subcategory of stochastic delay differential equations. A more general jump process, which is called the Lévy process, is added to the model for better performance and modeling situations, having sudden changes and extreme events such as market crashes in finance. By utilizing the truncation technique, we propose the diffused split-step truncated Euler–Maruyama method, which is considered as an explicit scheme, and apply it to the addressed model. By applying the Khasminskii-type condition, the convergence rate of the proposed scheme is attained in Lp(p≥2) sense where the non-jump coefficients grow super-linearly while the jump coefficient acts linearly. Also, the rate of convergence of the proposed scheme in Lp(0<p<2) sense is addressed where all the three coefficients grow beyond linearly. Finally, theoretical findings are manifested via some numerical examples.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"32 50","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence Rate of the Diffused Split-Step Truncated Euler–Maruyama Method for Stochastic Pantograph Models with Lévy Leaps\",\"authors\":\"Amr Abou-Senna, Ghada AlNemer, Yongchun Zhou, Boping Tian\",\"doi\":\"10.3390/fractalfract7120861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the stochastic pantograph model, which is considered a subcategory of stochastic delay differential equations. A more general jump process, which is called the Lévy process, is added to the model for better performance and modeling situations, having sudden changes and extreme events such as market crashes in finance. By utilizing the truncation technique, we propose the diffused split-step truncated Euler–Maruyama method, which is considered as an explicit scheme, and apply it to the addressed model. By applying the Khasminskii-type condition, the convergence rate of the proposed scheme is attained in Lp(p≥2) sense where the non-jump coefficients grow super-linearly while the jump coefficient acts linearly. Also, the rate of convergence of the proposed scheme in Lp(0<p<2) sense is addressed where all the three coefficients grow beyond linearly. Finally, theoretical findings are manifested via some numerical examples.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"32 50\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract7120861\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract7120861","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Convergence Rate of the Diffused Split-Step Truncated Euler–Maruyama Method for Stochastic Pantograph Models with Lévy Leaps
This paper studies the stochastic pantograph model, which is considered a subcategory of stochastic delay differential equations. A more general jump process, which is called the Lévy process, is added to the model for better performance and modeling situations, having sudden changes and extreme events such as market crashes in finance. By utilizing the truncation technique, we propose the diffused split-step truncated Euler–Maruyama method, which is considered as an explicit scheme, and apply it to the addressed model. By applying the Khasminskii-type condition, the convergence rate of the proposed scheme is attained in Lp(p≥2) sense where the non-jump coefficients grow super-linearly while the jump coefficient acts linearly. Also, the rate of convergence of the proposed scheme in Lp(0
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.