使用 ReSTIR 在基于物理的反渲染中摊销样本

YU-CHEN Wang, Chris Wyman, Lifan Wu, Shuang Zhao
{"title":"使用 ReSTIR 在基于物理的反渲染中摊销样本","authors":"YU-CHEN Wang, Chris Wyman, Lifan Wu, Shuang Zhao","doi":"10.1145/3618331","DOIUrl":null,"url":null,"abstract":"Recently, great progress has been made in physics-based differentiable rendering. Existing differentiable rendering techniques typically focus on static scenes, but during inverse rendering---a key application for differentiable rendering---the scene is updated dynamically by each gradient step. In this paper, we take a first step to leverage temporal data in the context of inverse direct illumination. By adopting reservoir-based spatiotemporal resampled importance resampling (ReSTIR), we introduce new Monte Carlo estimators for both interior and boundary components of differential direct illumination integrals. We also integrate ReSTIR with antithetic sampling to further improve its effectiveness. At equal frame time, our methods produce gradient estimates with up to 100× lower relative error than baseline methods. Additionally, we propose an inverse-rendering pipeline that incorporates these estimators and provides reconstructions with up to 20× lower error.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"20 4","pages":"1 - 17"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amortizing Samples in Physics-Based Inverse Rendering Using ReSTIR\",\"authors\":\"YU-CHEN Wang, Chris Wyman, Lifan Wu, Shuang Zhao\",\"doi\":\"10.1145/3618331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, great progress has been made in physics-based differentiable rendering. Existing differentiable rendering techniques typically focus on static scenes, but during inverse rendering---a key application for differentiable rendering---the scene is updated dynamically by each gradient step. In this paper, we take a first step to leverage temporal data in the context of inverse direct illumination. By adopting reservoir-based spatiotemporal resampled importance resampling (ReSTIR), we introduce new Monte Carlo estimators for both interior and boundary components of differential direct illumination integrals. We also integrate ReSTIR with antithetic sampling to further improve its effectiveness. At equal frame time, our methods produce gradient estimates with up to 100× lower relative error than baseline methods. Additionally, we propose an inverse-rendering pipeline that incorporates these estimators and provides reconstructions with up to 20× lower error.\",\"PeriodicalId\":7077,\"journal\":{\"name\":\"ACM Transactions on Graphics (TOG)\",\"volume\":\"20 4\",\"pages\":\"1 - 17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics (TOG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3618331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3618331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,基于物理的可微分渲染取得了很大的进展。现有的可微分渲染技术通常侧重于静态场景,但在逆向渲染中——可微分渲染的一个关键应用——场景通过每个梯度步骤动态更新。在本文中,我们迈出了第一步,在反向直接照明的背景下利用时间数据。采用基于储层的时空重采样重要性重采样(ReSTIR)方法,对微分直接照明积分的内部分量和边界分量引入新的蒙特卡罗估计。我们还将restr与反相采样相结合,进一步提高其有效性。在相同的帧时间下,我们的方法产生的梯度估计比基线方法的相对误差低100倍。此外,我们提出了一个包含这些估计器的反向渲染管道,并提供了高达20倍的低误差重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Amortizing Samples in Physics-Based Inverse Rendering Using ReSTIR
Recently, great progress has been made in physics-based differentiable rendering. Existing differentiable rendering techniques typically focus on static scenes, but during inverse rendering---a key application for differentiable rendering---the scene is updated dynamically by each gradient step. In this paper, we take a first step to leverage temporal data in the context of inverse direct illumination. By adopting reservoir-based spatiotemporal resampled importance resampling (ReSTIR), we introduce new Monte Carlo estimators for both interior and boundary components of differential direct illumination integrals. We also integrate ReSTIR with antithetic sampling to further improve its effectiveness. At equal frame time, our methods produce gradient estimates with up to 100× lower relative error than baseline methods. Additionally, we propose an inverse-rendering pipeline that incorporates these estimators and provides reconstructions with up to 20× lower error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GeoLatent: A Geometric Approach to Latent Space Design for Deformable Shape Generators An Implicit Neural Representation for the Image Stack: Depth, All in Focus, and High Dynamic Range Rectifying Strip Patterns From Skin to Skeleton: Towards Biomechanically Accurate 3D Digital Humans Warped-Area Reparameterization of Differential Path Integrals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1