利用脉冲电场和超声波萃取最大限度地提取柿皮中的生物活性化合物

Biomass Pub Date : 2023-12-04 DOI:10.3390/biomass3040025
V. Athanasiadis, Theodoros G. Chatzimitakos, Eleni Bozinou, Konstantina Kotsou, D. Palaiogiannis, S. Lalas
{"title":"利用脉冲电场和超声波萃取最大限度地提取柿皮中的生物活性化合物","authors":"V. Athanasiadis, Theodoros G. Chatzimitakos, Eleni Bozinou, Konstantina Kotsou, D. Palaiogiannis, S. Lalas","doi":"10.3390/biomass3040025","DOIUrl":null,"url":null,"abstract":"The persimmon fruit (Diospyros kaki Thunb.) is renowned for its exceptional health benefits, which can be attributed to its abundance of bioactive compounds. This study aimed to optimize the extraction of bioactive compounds from persimmon peel, an underexplored waste biomass, within the frame of sustainability and a circular economy. For this reason, a comprehensive multi-factor extraction approach was employed. Specifically, diverse methods including a pulsed electric field and ultrasonication combined with simple stirring were explored. Through this systematic approach, the most efficient extraction process was determined, resulting in elevated yields of bioactive compounds, including polyphenols, ascorbic acid, and total carotenoids. Among the identified phenolic compounds, rutin emerged as the most abundant, with concentrations reaching up to 172.86 μg/g. Utilizing partial least squares analysis, the maximum predicted values for the bioactive compounds were determined, with total polyphenols reaching 7.17 mg GAE/g, ascorbic acid at 4.93 mg/g, and total carotenoids at 386.47 μg CtE/g. The antioxidant activity of the extracts was evaluated with the ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, and H2O2 scavenging assays. The recorded antioxidant performance underscored the substantial potential of persimmon peels as a source of cost-effective extracts with high antioxidant activity. This study not only contributes to optimizing the bioactive compounds’ extraction from persimmon peel but also highlights the process’s viability by producing valuable extracts with antioxidant properties at low cost.","PeriodicalId":100179,"journal":{"name":"Biomass","volume":"18 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing the Extraction of Bioactive Compounds from Diospyros kaki Peel through the Use of a Pulsed Electric Field and Ultrasound Extraction\",\"authors\":\"V. Athanasiadis, Theodoros G. Chatzimitakos, Eleni Bozinou, Konstantina Kotsou, D. Palaiogiannis, S. Lalas\",\"doi\":\"10.3390/biomass3040025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The persimmon fruit (Diospyros kaki Thunb.) is renowned for its exceptional health benefits, which can be attributed to its abundance of bioactive compounds. This study aimed to optimize the extraction of bioactive compounds from persimmon peel, an underexplored waste biomass, within the frame of sustainability and a circular economy. For this reason, a comprehensive multi-factor extraction approach was employed. Specifically, diverse methods including a pulsed electric field and ultrasonication combined with simple stirring were explored. Through this systematic approach, the most efficient extraction process was determined, resulting in elevated yields of bioactive compounds, including polyphenols, ascorbic acid, and total carotenoids. Among the identified phenolic compounds, rutin emerged as the most abundant, with concentrations reaching up to 172.86 μg/g. Utilizing partial least squares analysis, the maximum predicted values for the bioactive compounds were determined, with total polyphenols reaching 7.17 mg GAE/g, ascorbic acid at 4.93 mg/g, and total carotenoids at 386.47 μg CtE/g. The antioxidant activity of the extracts was evaluated with the ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, and H2O2 scavenging assays. The recorded antioxidant performance underscored the substantial potential of persimmon peels as a source of cost-effective extracts with high antioxidant activity. This study not only contributes to optimizing the bioactive compounds’ extraction from persimmon peel but also highlights the process’s viability by producing valuable extracts with antioxidant properties at low cost.\",\"PeriodicalId\":100179,\"journal\":{\"name\":\"Biomass\",\"volume\":\"18 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.3390/biomass3040025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.3390/biomass3040025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

柿子(Diospyros kaki Thunb.)因其独特的健康益处而闻名,这可归因于其丰富的生物活性化合物。在可持续发展和循环经济的框架下,本研究旨在优化从柿皮中提取生物活性化合物,这是一种未被充分开发的废弃生物质。为此,采用多因素综合提取方法。具体而言,探索了脉冲电场和超声结合简单搅拌的多种方法。通过这种系统的方法,确定了最有效的提取工艺,从而提高了生物活性化合物的产量,包括多酚、抗坏血酸和总类胡萝卜素。其中芦丁含量最高,达172.86 μg/g。利用偏最小二乘分析,确定了其生物活性物质的最大预测值,其中总多酚为7.17 mg gte /g,抗坏血酸为4.93 mg/g,总类胡萝卜素为386.47 μg CtE/g。通过铁还原抗氧化能力(FRAP)、2,2-二苯基-1-吡啶肼基(DPPH)自由基和H2O2清除试验来评价提取物的抗氧化活性。记录的抗氧化性能强调了柿皮作为具有高抗氧化活性的高成本效益提取物的巨大潜力。本研究不仅有助于优化柿皮中生物活性物质的提取,而且通过低成本生产具有抗氧化性能的有价值的提取物,突出了该工艺的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximizing the Extraction of Bioactive Compounds from Diospyros kaki Peel through the Use of a Pulsed Electric Field and Ultrasound Extraction
The persimmon fruit (Diospyros kaki Thunb.) is renowned for its exceptional health benefits, which can be attributed to its abundance of bioactive compounds. This study aimed to optimize the extraction of bioactive compounds from persimmon peel, an underexplored waste biomass, within the frame of sustainability and a circular economy. For this reason, a comprehensive multi-factor extraction approach was employed. Specifically, diverse methods including a pulsed electric field and ultrasonication combined with simple stirring were explored. Through this systematic approach, the most efficient extraction process was determined, resulting in elevated yields of bioactive compounds, including polyphenols, ascorbic acid, and total carotenoids. Among the identified phenolic compounds, rutin emerged as the most abundant, with concentrations reaching up to 172.86 μg/g. Utilizing partial least squares analysis, the maximum predicted values for the bioactive compounds were determined, with total polyphenols reaching 7.17 mg GAE/g, ascorbic acid at 4.93 mg/g, and total carotenoids at 386.47 μg CtE/g. The antioxidant activity of the extracts was evaluated with the ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, and H2O2 scavenging assays. The recorded antioxidant performance underscored the substantial potential of persimmon peels as a source of cost-effective extracts with high antioxidant activity. This study not only contributes to optimizing the bioactive compounds’ extraction from persimmon peel but also highlights the process’s viability by producing valuable extracts with antioxidant properties at low cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Can Foraging for Earthworms Significantly Reduce Global Famine in a Catastrophe? Microalgae Isolated from Singapore Mangrove Habitat as Promising Microorganisms for the Sustainable Production of Omega-3 Docosahexaenoic Acid Analysis of Energy Potential of Switchgrass Biomass Biomass and Circular Economy: Now and the Future Unveiling the Potential of Spirulina Biomass—A Glimpse into the Future Circular Economy Using Green and Blue Ingredients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1