{"title":"利用 CRISPR/Cas 介导的基因组编辑技术研究植物根系的功能特征","authors":"A. S. Kiryushkin, E. Ilina, K. Demchenko","doi":"10.17816/ecogen568351","DOIUrl":null,"url":null,"abstract":"CRISPR/Cas-mediated genome editing is a powerful tool of plant functional genomics. Hairy root transformation is a rapid and convenient approach for obtaining transgenic roots. When combined, these techniques represent a fast and effective means of studying gene function [1, 2]. \nA common construct for efficient genome editing and selection of hairy roots is comprised of three components, i.e., a cassette carrying the gene encoding the Cas nuclease, a cassette expressing the guide RNA (gRNA), and a cassette encoding a screenable or selectable marker [2]. After design and construction, the resulting vector is used to transform plant using appropriateRhizobium rhizogenesstrain. \nOver 26 plant species have been used in experiments combining genome editing and hairy root transformation to date [2]. Possible applications of CRISPR/Cas9 genome editing using hairy root transformation include different directions like test the efficiency of the CRISPR/Cas9 genome editing; obtaining whole genome-edited plants regenerated from individual edited hairy roots; investigation of root development or root function, root nodule symbiosis, resistance to biotic or abiotic stresses, or metabolic engineering [2]. \nThe basic principles of plant CRISPR/Cas genome editing like the different components of CRISPR/Cas vectors, the types of Cas nuclease, design principles of gRNAs, as well as the possible applications of CRISPR/Cas genome editing in hairy roots will discuss. The application of this method for multigene editing strategy will also be demonstrated onDEEPER ROOTING1genes of cucumber. \nThe study was supported by the Ministry of Science and Higher Education of the Russian Federation (Grant No. 075-15-2021-1056).","PeriodicalId":11431,"journal":{"name":"Ecological genetics","volume":"24 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of functional features of plant root systems using CRISPR/Cas-mediated genome editing\",\"authors\":\"A. S. Kiryushkin, E. Ilina, K. Demchenko\",\"doi\":\"10.17816/ecogen568351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CRISPR/Cas-mediated genome editing is a powerful tool of plant functional genomics. Hairy root transformation is a rapid and convenient approach for obtaining transgenic roots. When combined, these techniques represent a fast and effective means of studying gene function [1, 2]. \\nA common construct for efficient genome editing and selection of hairy roots is comprised of three components, i.e., a cassette carrying the gene encoding the Cas nuclease, a cassette expressing the guide RNA (gRNA), and a cassette encoding a screenable or selectable marker [2]. After design and construction, the resulting vector is used to transform plant using appropriateRhizobium rhizogenesstrain. \\nOver 26 plant species have been used in experiments combining genome editing and hairy root transformation to date [2]. Possible applications of CRISPR/Cas9 genome editing using hairy root transformation include different directions like test the efficiency of the CRISPR/Cas9 genome editing; obtaining whole genome-edited plants regenerated from individual edited hairy roots; investigation of root development or root function, root nodule symbiosis, resistance to biotic or abiotic stresses, or metabolic engineering [2]. \\nThe basic principles of plant CRISPR/Cas genome editing like the different components of CRISPR/Cas vectors, the types of Cas nuclease, design principles of gRNAs, as well as the possible applications of CRISPR/Cas genome editing in hairy roots will discuss. The application of this method for multigene editing strategy will also be demonstrated onDEEPER ROOTING1genes of cucumber. \\nThe study was supported by the Ministry of Science and Higher Education of the Russian Federation (Grant No. 075-15-2021-1056).\",\"PeriodicalId\":11431,\"journal\":{\"name\":\"Ecological genetics\",\"volume\":\"24 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17816/ecogen568351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17816/ecogen568351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Study of functional features of plant root systems using CRISPR/Cas-mediated genome editing
CRISPR/Cas-mediated genome editing is a powerful tool of plant functional genomics. Hairy root transformation is a rapid and convenient approach for obtaining transgenic roots. When combined, these techniques represent a fast and effective means of studying gene function [1, 2].
A common construct for efficient genome editing and selection of hairy roots is comprised of three components, i.e., a cassette carrying the gene encoding the Cas nuclease, a cassette expressing the guide RNA (gRNA), and a cassette encoding a screenable or selectable marker [2]. After design and construction, the resulting vector is used to transform plant using appropriateRhizobium rhizogenesstrain.
Over 26 plant species have been used in experiments combining genome editing and hairy root transformation to date [2]. Possible applications of CRISPR/Cas9 genome editing using hairy root transformation include different directions like test the efficiency of the CRISPR/Cas9 genome editing; obtaining whole genome-edited plants regenerated from individual edited hairy roots; investigation of root development or root function, root nodule symbiosis, resistance to biotic or abiotic stresses, or metabolic engineering [2].
The basic principles of plant CRISPR/Cas genome editing like the different components of CRISPR/Cas vectors, the types of Cas nuclease, design principles of gRNAs, as well as the possible applications of CRISPR/Cas genome editing in hairy roots will discuss. The application of this method for multigene editing strategy will also be demonstrated onDEEPER ROOTING1genes of cucumber.
The study was supported by the Ministry of Science and Higher Education of the Russian Federation (Grant No. 075-15-2021-1056).
期刊介绍:
The journal Ecological genetics is an international journal which accepts for consideration original manuscripts that reflect the results of field and experimental studies, and fundamental research of broad conceptual and/or comparative context corresponding to the profile of the Journal. Once a year, the editorial Board reviews and, if necessary, corrects the rules for authors and the journal rubrics.