生物工程茄子:深入研究 SmHQT 和酚酸的生物合成

Q3 Agricultural and Biological Sciences Ecological genetics Pub Date : 2023-12-04 DOI:10.17816/ecogen568585
P. Kaushik, S. Meenakshi, K. Anil
{"title":"生物工程茄子:深入研究 SmHQT 和酚酸的生物合成","authors":"P. Kaushik, S. Meenakshi, K. Anil","doi":"10.17816/ecogen568585","DOIUrl":null,"url":null,"abstract":"Eggplants, known scientifically asSolanum melongenaL., are renowned for their health benefits, largely attributed to phenolic acids. Chlorogenic acid stands out as one of the most prevalent phenolic acids in eggplants. The enzyme hydroxycinnamoyl CoA-quinate transferase (SmHQT) plays a pivotal role in the production and concentration of this acid in the fruit. However, until this study, the exact function and influence of SmHQT on the eggplant’s composition remained elusive [1–3]. \nThis research aimed to explore SmHQT’s role by overexpressing it in the eggplant’s flesh using agroinfiltration, a technique that transiently introduces genes into plants. This method offers insights into potential changes in the plant’s chemical makeup. Advanced techniques like quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and high-performance liquid chromatography (HPLC) revealed that the chlorogenic acid content in the genetically altered eggplants was over twice that of the unaltered ones. \nThe study also investigated the cascading effects of this overexpression. The qRT-PCR results showed variations in the expression of genes linked to the chlorogenic acid pathway, hinting at SmHQT’s wider role in phenolic acid biosynthesis in eggplants. Comprehensive analyses of protein interactions and cis-regulating elements were undertaken to grasp SmHQT’s full impact. \nPhenolic acids, like chlorogenic acid, offer therapeutic benefits against conditions such as diabetes, cancer, and arthritis in humans. In plants, they enhance natural defenses against pests and diseases. While there have been attempts to boost the phenolic acid content in eggplants using genes from wild variants, this study’s approach proved more effective. \nAnother notable achievement of this research was the introduction of an improved agroinfiltration protocol. This method is promising for future studies focused on transient gene expression in fruits, facilitating swift genetic modification prototyping. In essence, this research underscores the immense potential of bioengineering in augmenting the nutritional profiles of crops by enhancing their inherent phytochemicals.","PeriodicalId":11431,"journal":{"name":"Ecological genetics","volume":"2 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioengineering eggplants: a deep dive into SmHQT and phenolic acid biosynthesis\",\"authors\":\"P. Kaushik, S. Meenakshi, K. Anil\",\"doi\":\"10.17816/ecogen568585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eggplants, known scientifically asSolanum melongenaL., are renowned for their health benefits, largely attributed to phenolic acids. Chlorogenic acid stands out as one of the most prevalent phenolic acids in eggplants. The enzyme hydroxycinnamoyl CoA-quinate transferase (SmHQT) plays a pivotal role in the production and concentration of this acid in the fruit. However, until this study, the exact function and influence of SmHQT on the eggplant’s composition remained elusive [1–3]. \\nThis research aimed to explore SmHQT’s role by overexpressing it in the eggplant’s flesh using agroinfiltration, a technique that transiently introduces genes into plants. This method offers insights into potential changes in the plant’s chemical makeup. Advanced techniques like quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and high-performance liquid chromatography (HPLC) revealed that the chlorogenic acid content in the genetically altered eggplants was over twice that of the unaltered ones. \\nThe study also investigated the cascading effects of this overexpression. The qRT-PCR results showed variations in the expression of genes linked to the chlorogenic acid pathway, hinting at SmHQT’s wider role in phenolic acid biosynthesis in eggplants. Comprehensive analyses of protein interactions and cis-regulating elements were undertaken to grasp SmHQT’s full impact. \\nPhenolic acids, like chlorogenic acid, offer therapeutic benefits against conditions such as diabetes, cancer, and arthritis in humans. In plants, they enhance natural defenses against pests and diseases. While there have been attempts to boost the phenolic acid content in eggplants using genes from wild variants, this study’s approach proved more effective. \\nAnother notable achievement of this research was the introduction of an improved agroinfiltration protocol. This method is promising for future studies focused on transient gene expression in fruits, facilitating swift genetic modification prototyping. In essence, this research underscores the immense potential of bioengineering in augmenting the nutritional profiles of crops by enhancing their inherent phytochemicals.\",\"PeriodicalId\":11431,\"journal\":{\"name\":\"Ecological genetics\",\"volume\":\"2 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17816/ecogen568585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17816/ecogen568585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

茄子,科学上称为茄属植物。它们以对健康有益而闻名,这主要归功于酚酸。绿原酸是茄子中最常见的酚酸之一。羟肉桂酰辅酶a -醌酸转移酶(SmHQT)在果实中这种酸的产生和浓度中起着关键作用。然而,在本研究之前,SmHQT对茄子成分的确切功能和影响尚不清楚[1-3]。本研究旨在通过农业渗透技术(一种将基因瞬时导入植物的技术)在茄子果肉中过表达SmHQT,从而探索SmHQT的作用。这种方法可以深入了解植物化学成分的潜在变化。定量逆转录-聚合酶链反应(qRT-PCR)和高效液相色谱(HPLC)等先进技术表明,转基因茄子中绿原酸的含量是未转基因茄子的两倍以上。该研究还调查了这种过表达的级联效应。qRT-PCR结果显示绿原酸途径相关基因的表达发生了变化,暗示SmHQT在茄子酚酸生物合成中发挥了更广泛的作用。对蛋白质相互作用和顺式调节元件进行了全面分析,以掌握SmHQT的全部影响。酚酸,如绿原酸,对人类的糖尿病、癌症和关节炎等疾病有治疗作用。在植物中,它们增强了对病虫害的天然防御能力。虽然已经有人尝试使用野生变异基因来提高茄子中酚酸的含量,但这项研究的方法被证明更有效。这项研究的另一个显著成就是引入了一种改进的农业渗透协议。该方法有望为未来水果瞬态基因表达的研究提供基础,促进快速的基因修饰原型。从本质上讲,这项研究强调了生物工程通过增强作物固有的植物化学物质来增加作物营养成分的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bioengineering eggplants: a deep dive into SmHQT and phenolic acid biosynthesis
Eggplants, known scientifically asSolanum melongenaL., are renowned for their health benefits, largely attributed to phenolic acids. Chlorogenic acid stands out as one of the most prevalent phenolic acids in eggplants. The enzyme hydroxycinnamoyl CoA-quinate transferase (SmHQT) plays a pivotal role in the production and concentration of this acid in the fruit. However, until this study, the exact function and influence of SmHQT on the eggplant’s composition remained elusive [1–3]. This research aimed to explore SmHQT’s role by overexpressing it in the eggplant’s flesh using agroinfiltration, a technique that transiently introduces genes into plants. This method offers insights into potential changes in the plant’s chemical makeup. Advanced techniques like quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and high-performance liquid chromatography (HPLC) revealed that the chlorogenic acid content in the genetically altered eggplants was over twice that of the unaltered ones. The study also investigated the cascading effects of this overexpression. The qRT-PCR results showed variations in the expression of genes linked to the chlorogenic acid pathway, hinting at SmHQT’s wider role in phenolic acid biosynthesis in eggplants. Comprehensive analyses of protein interactions and cis-regulating elements were undertaken to grasp SmHQT’s full impact. Phenolic acids, like chlorogenic acid, offer therapeutic benefits against conditions such as diabetes, cancer, and arthritis in humans. In plants, they enhance natural defenses against pests and diseases. While there have been attempts to boost the phenolic acid content in eggplants using genes from wild variants, this study’s approach proved more effective. Another notable achievement of this research was the introduction of an improved agroinfiltration protocol. This method is promising for future studies focused on transient gene expression in fruits, facilitating swift genetic modification prototyping. In essence, this research underscores the immense potential of bioengineering in augmenting the nutritional profiles of crops by enhancing their inherent phytochemicals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological genetics
Ecological genetics Environmental Science-Ecology
CiteScore
0.90
自引率
0.00%
发文量
22
期刊介绍: The journal Ecological genetics is an international journal which accepts for consideration original manuscripts that reflect the results of field and experimental studies, and fundamental research of broad conceptual and/or comparative context corresponding to the profile of the Journal. Once a year, the editorial Board reviews and, if necessary, corrects the rules for authors and the journal rubrics.
期刊最新文献
CRISPR/Cas editing of a CPC gene in Arabidopsis thaliana Hairy roots biochemical characteristics of vegetable pea’s morphotype with modified leaf Erratum to “The strong base for using base editing in plants” (doi: 10.17816/ecogen567885) PCR-based genome walking methods (review) Ecological genetics. What is it? 20 years later
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1