{"title":"基于 CRISPR/Cas 的微藻类基因组编辑","authors":"Pavel A. Virolainen, Elena M. Chekunova","doi":"10.17816/ecogen568609","DOIUrl":null,"url":null,"abstract":"CRISPR/Cas systems are presently the most attractive genome editing technology, that is widely used for genetic engineering of various crops and industrial microorganisms. Currently, application of the CRISPR/Cas based genome editing promises advances in microalgae biotechnology aimed at boosting the output of biofuels and valuable bioactive compounds. However, algae remain relatively complex objects for genetic manipulation [1]. The main problems are associated with the need of a species-oriented approach when creating a transformation toolbox due to the peculiarities in the structure of membranes and the cell wall of a particular taxon. The proper selection and design of a CRISPR construct is also required due to the possible presence of a powerful silencing system against introduced genetic constructs in the cell. These difficulties explain the low efficiency of microalgae transformation and the meager list of successfully edited species [1, 2]. \nThe first instance of genome editing in microalgae using CRISPR/Cas was reported inChlamydomonas reinhardtiiP.A. Dang [3]. To date, four transformation methods (Agrobacterium-mediated, particle bombardment, glass beads agitation, electroporation) have been successfully used for editing (knock-in and knock-out) theC. reinhardtiigenome with two types of CRISPR constructs (plasmid and ribonucleoprotein). The developed protocols make it possible to achieve high efficiency of genomic editing — for example, in our study it varied from 10.6% to 68.8% [4]. These benefits along with completely sequenced genome, well-studied genetics, accessibility and haplontic life cycle makesC.reinhardtiian outstanding model organism for CRISPR/Cas application in microalgae research [5].","PeriodicalId":11431,"journal":{"name":"Ecological genetics","volume":"28 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas based genome editing in microalgae\",\"authors\":\"Pavel A. Virolainen, Elena M. Chekunova\",\"doi\":\"10.17816/ecogen568609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CRISPR/Cas systems are presently the most attractive genome editing technology, that is widely used for genetic engineering of various crops and industrial microorganisms. Currently, application of the CRISPR/Cas based genome editing promises advances in microalgae biotechnology aimed at boosting the output of biofuels and valuable bioactive compounds. However, algae remain relatively complex objects for genetic manipulation [1]. The main problems are associated with the need of a species-oriented approach when creating a transformation toolbox due to the peculiarities in the structure of membranes and the cell wall of a particular taxon. The proper selection and design of a CRISPR construct is also required due to the possible presence of a powerful silencing system against introduced genetic constructs in the cell. These difficulties explain the low efficiency of microalgae transformation and the meager list of successfully edited species [1, 2]. \\nThe first instance of genome editing in microalgae using CRISPR/Cas was reported inChlamydomonas reinhardtiiP.A. Dang [3]. To date, four transformation methods (Agrobacterium-mediated, particle bombardment, glass beads agitation, electroporation) have been successfully used for editing (knock-in and knock-out) theC. reinhardtiigenome with two types of CRISPR constructs (plasmid and ribonucleoprotein). The developed protocols make it possible to achieve high efficiency of genomic editing — for example, in our study it varied from 10.6% to 68.8% [4]. These benefits along with completely sequenced genome, well-studied genetics, accessibility and haplontic life cycle makesC.reinhardtiian outstanding model organism for CRISPR/Cas application in microalgae research [5].\",\"PeriodicalId\":11431,\"journal\":{\"name\":\"Ecological genetics\",\"volume\":\"28 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17816/ecogen568609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17816/ecogen568609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
CRISPR/Cas systems are presently the most attractive genome editing technology, that is widely used for genetic engineering of various crops and industrial microorganisms. Currently, application of the CRISPR/Cas based genome editing promises advances in microalgae biotechnology aimed at boosting the output of biofuels and valuable bioactive compounds. However, algae remain relatively complex objects for genetic manipulation [1]. The main problems are associated with the need of a species-oriented approach when creating a transformation toolbox due to the peculiarities in the structure of membranes and the cell wall of a particular taxon. The proper selection and design of a CRISPR construct is also required due to the possible presence of a powerful silencing system against introduced genetic constructs in the cell. These difficulties explain the low efficiency of microalgae transformation and the meager list of successfully edited species [1, 2].
The first instance of genome editing in microalgae using CRISPR/Cas was reported inChlamydomonas reinhardtiiP.A. Dang [3]. To date, four transformation methods (Agrobacterium-mediated, particle bombardment, glass beads agitation, electroporation) have been successfully used for editing (knock-in and knock-out) theC. reinhardtiigenome with two types of CRISPR constructs (plasmid and ribonucleoprotein). The developed protocols make it possible to achieve high efficiency of genomic editing — for example, in our study it varied from 10.6% to 68.8% [4]. These benefits along with completely sequenced genome, well-studied genetics, accessibility and haplontic life cycle makesC.reinhardtiian outstanding model organism for CRISPR/Cas application in microalgae research [5].
期刊介绍:
The journal Ecological genetics is an international journal which accepts for consideration original manuscripts that reflect the results of field and experimental studies, and fundamental research of broad conceptual and/or comparative context corresponding to the profile of the Journal. Once a year, the editorial Board reviews and, if necessary, corrects the rules for authors and the journal rubrics.