ScaNeRF:用于大规模场景渲染的可扩展捆绑调整神经辐射场

Xiuchao Wu, Jiamin Xu, Xin Zhang, Hujun Bao, Qixing Huang, Yujun Shen, James Tompkin, Weiwei Xu
{"title":"ScaNeRF:用于大规模场景渲染的可扩展捆绑调整神经辐射场","authors":"Xiuchao Wu, Jiamin Xu, Xin Zhang, Hujun Bao, Qixing Huang, Yujun Shen, James Tompkin, Weiwei Xu","doi":"10.1145/3618369","DOIUrl":null,"url":null,"abstract":"High-quality large-scale scene rendering requires a scalable representation and accurate camera poses. This research combines tile-based hybrid neural fields with parallel distributive optimization to improve bundle-adjusting neural radiance fields. The proposed method scales with a divide-and-conquer strategy. We partition scenes into tiles, each with a multi-resolution hash feature grid and shallow chained diffuse and specular multilayer perceptrons (MLPs). Tiles unify foreground and background via a spatial contraction function that allows both distant objects in outdoor scenes and planar reflections as virtual images outside the tile. Decomposing appearance with the specular MLP allows a specular-aware warping loss to provide a second optimization path for camera poses. We apply the alternating direction method of multipliers (ADMM) to achieve consensus among camera poses while maintaining parallel tile optimization. Experimental results show that our method outperforms state-of-the-art neural scene rendering method quality by 5%--10% in PSNR, maintaining sharp distant objects and view-dependent reflections across six indoor and outdoor scenes.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"20 10","pages":"1 - 18"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ScaNeRF: Scalable Bundle-Adjusting Neural Radiance Fields for Large-Scale Scene Rendering\",\"authors\":\"Xiuchao Wu, Jiamin Xu, Xin Zhang, Hujun Bao, Qixing Huang, Yujun Shen, James Tompkin, Weiwei Xu\",\"doi\":\"10.1145/3618369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-quality large-scale scene rendering requires a scalable representation and accurate camera poses. This research combines tile-based hybrid neural fields with parallel distributive optimization to improve bundle-adjusting neural radiance fields. The proposed method scales with a divide-and-conquer strategy. We partition scenes into tiles, each with a multi-resolution hash feature grid and shallow chained diffuse and specular multilayer perceptrons (MLPs). Tiles unify foreground and background via a spatial contraction function that allows both distant objects in outdoor scenes and planar reflections as virtual images outside the tile. Decomposing appearance with the specular MLP allows a specular-aware warping loss to provide a second optimization path for camera poses. We apply the alternating direction method of multipliers (ADMM) to achieve consensus among camera poses while maintaining parallel tile optimization. Experimental results show that our method outperforms state-of-the-art neural scene rendering method quality by 5%--10% in PSNR, maintaining sharp distant objects and view-dependent reflections across six indoor and outdoor scenes.\",\"PeriodicalId\":7077,\"journal\":{\"name\":\"ACM Transactions on Graphics (TOG)\",\"volume\":\"20 10\",\"pages\":\"1 - 18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics (TOG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3618369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3618369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高质量的大规模场景渲染需要可伸缩的表示和准确的相机姿势。该研究将基于瓦片的混合神经场与并行分布优化相结合,改进了束调节神经辐射场。该方法采用分而治之策略。我们将场景划分为瓷砖,每个瓷砖都有一个多分辨率哈希特征网格和浅链漫反射和镜面多层感知器(mlp)。瓷砖通过空间收缩功能统一前景和背景,允许户外场景中的远处物体和瓷砖外的平面反射作为虚拟图像。用镜面MLP分解外观允许镜面感知扭曲损失,为相机姿势提供第二个优化路径。我们采用交替方向乘法器(ADMM)来实现相机姿态之间的一致性,同时保持平行平铺优化。实验结果表明,我们的方法在PSNR方面比最先进的神经场景渲染方法的质量高出5%- 10%,在六个室内和室外场景中保持了清晰的远处物体和视依赖反射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ScaNeRF: Scalable Bundle-Adjusting Neural Radiance Fields for Large-Scale Scene Rendering
High-quality large-scale scene rendering requires a scalable representation and accurate camera poses. This research combines tile-based hybrid neural fields with parallel distributive optimization to improve bundle-adjusting neural radiance fields. The proposed method scales with a divide-and-conquer strategy. We partition scenes into tiles, each with a multi-resolution hash feature grid and shallow chained diffuse and specular multilayer perceptrons (MLPs). Tiles unify foreground and background via a spatial contraction function that allows both distant objects in outdoor scenes and planar reflections as virtual images outside the tile. Decomposing appearance with the specular MLP allows a specular-aware warping loss to provide a second optimization path for camera poses. We apply the alternating direction method of multipliers (ADMM) to achieve consensus among camera poses while maintaining parallel tile optimization. Experimental results show that our method outperforms state-of-the-art neural scene rendering method quality by 5%--10% in PSNR, maintaining sharp distant objects and view-dependent reflections across six indoor and outdoor scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GeoLatent: A Geometric Approach to Latent Space Design for Deformable Shape Generators An Implicit Neural Representation for the Image Stack: Depth, All in Focus, and High Dynamic Range Rectifying Strip Patterns From Skin to Skeleton: Towards Biomechanically Accurate 3D Digital Humans Warped-Area Reparameterization of Differential Path Integrals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1