氧化锌纳米线的超高热电性能与直径有关

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Chinese Physics B Pub Date : 2023-12-04 DOI:10.1088/1674-1056/ad11e5
Yi Nie, Guihua Tang, Yifei Li, Min Zhang, Xin Zhao
{"title":"氧化锌纳米线的超高热电性能与直径有关","authors":"Yi Nie, Guihua Tang, Yifei Li, Min Zhang, Xin Zhao","doi":"10.1088/1674-1056/ad11e5","DOIUrl":null,"url":null,"abstract":"The zinc oxide (ZnO) shows a great potential in electronics, while the large intrinsic thermal conductivity limits its thermoelectric applications. In this work, we explored the significant carrier transport capacity and diameter dependent thermoelectric characteristics of wurtzite-ZnO<0001> nanowires based on the first principles simulation and molecular dynamics simulation. Under the synergistic effect of band degeneracy and weak phonon-electron scattering, P-type (ZnO)73 nanowires achieve an ultra-high power factor above 1500 μW·cm-1·K-2 in a wide temperature range. The lattice thermal conductivity and carrier transport properties of ZnO nanowires exhibit a strong diameter size dependence. When the ZnO nanowire diameter exceeds 12.72 Å, the carrier transport properties increase significantly, while the thermal conductivity shows a slight increase with the diameter size, resulting in a ZT value up to 6.4 at 700 K for P-type (ZnO)73. The size effect is also illustrated by introducing two geometrical configuration models of ZnO nanowires for the first time. This work can theoretically depict the strategy of size optimization for thermoelectric conversion of ZnO nanowires.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"10 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diameter Dependent Ultra-High Thermoelectric Performance of ZnO Nanowires\",\"authors\":\"Yi Nie, Guihua Tang, Yifei Li, Min Zhang, Xin Zhao\",\"doi\":\"10.1088/1674-1056/ad11e5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The zinc oxide (ZnO) shows a great potential in electronics, while the large intrinsic thermal conductivity limits its thermoelectric applications. In this work, we explored the significant carrier transport capacity and diameter dependent thermoelectric characteristics of wurtzite-ZnO<0001> nanowires based on the first principles simulation and molecular dynamics simulation. Under the synergistic effect of band degeneracy and weak phonon-electron scattering, P-type (ZnO)73 nanowires achieve an ultra-high power factor above 1500 μW·cm-1·K-2 in a wide temperature range. The lattice thermal conductivity and carrier transport properties of ZnO nanowires exhibit a strong diameter size dependence. When the ZnO nanowire diameter exceeds 12.72 Å, the carrier transport properties increase significantly, while the thermal conductivity shows a slight increase with the diameter size, resulting in a ZT value up to 6.4 at 700 K for P-type (ZnO)73. The size effect is also illustrated by introducing two geometrical configuration models of ZnO nanowires for the first time. This work can theoretically depict the strategy of size optimization for thermoelectric conversion of ZnO nanowires.\",\"PeriodicalId\":10253,\"journal\":{\"name\":\"Chinese Physics B\",\"volume\":\"10 5\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-1056/ad11e5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad11e5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氧化锌(ZnO)在电子领域显示出巨大的潜力,但其固有热导率大限制了其热电应用。在本研究中,我们基于第一性原理模拟和分子动力学模拟,探索了纤锌矿氧化锌纳米线的载流子输运能力和与直径相关的热电特性。在能带简并和弱声子-电子散射的协同作用下,p型(ZnO)73纳米线在宽温度范围内获得了1500 μW·cm-1·K-2以上的超高功率因数。ZnO纳米线的晶格热导率和载流子输运性能表现出强烈的直径尺寸依赖性。当ZnO纳米线直径超过12.72 Å时,载流子输运性能显著增加,而导热系数随直径的增加略有增加,导致p型(ZnO)73在700 K时ZT值高达6.4。通过首次引入氧化锌纳米线的两种几何构型模型,说明了尺寸效应。该工作可以从理论上描述ZnO纳米线热电转换的尺寸优化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diameter Dependent Ultra-High Thermoelectric Performance of ZnO Nanowires
The zinc oxide (ZnO) shows a great potential in electronics, while the large intrinsic thermal conductivity limits its thermoelectric applications. In this work, we explored the significant carrier transport capacity and diameter dependent thermoelectric characteristics of wurtzite-ZnO<0001> nanowires based on the first principles simulation and molecular dynamics simulation. Under the synergistic effect of band degeneracy and weak phonon-electron scattering, P-type (ZnO)73 nanowires achieve an ultra-high power factor above 1500 μW·cm-1·K-2 in a wide temperature range. The lattice thermal conductivity and carrier transport properties of ZnO nanowires exhibit a strong diameter size dependence. When the ZnO nanowire diameter exceeds 12.72 Å, the carrier transport properties increase significantly, while the thermal conductivity shows a slight increase with the diameter size, resulting in a ZT value up to 6.4 at 700 K for P-type (ZnO)73. The size effect is also illustrated by introducing two geometrical configuration models of ZnO nanowires for the first time. This work can theoretically depict the strategy of size optimization for thermoelectric conversion of ZnO nanowires.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Physics B
Chinese Physics B 物理-物理:综合
CiteScore
2.80
自引率
23.50%
发文量
15667
审稿时长
2.4 months
期刊介绍: Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics. Subject coverage includes: Condensed matter physics and the physics of materials Atomic, molecular and optical physics Statistical, nonlinear and soft matter physics Plasma physics Interdisciplinary physics.
期刊最新文献
Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator Probing nickelate superconductors at atomic scale: A STEM review In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits Quantum confinement of carriers in the type-I quantum wells structure Preparation and magnetic hardening of low Ti content (Sm,Zr)(Fe,Co,Ti)12 magnets by rapid solidification non-equilibrium method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1