在移动电话上使用相机融合技术实现高效混合变焦

Xiaotong Wu, Wei-Sheng Lai, Yi-Chang Shih, Charles Herrmann, Michael Krainin, Deqing Sun, Chia-Kai Liang
{"title":"在移动电话上使用相机融合技术实现高效混合变焦","authors":"Xiaotong Wu, Wei-Sheng Lai, Yi-Chang Shih, Charles Herrmann, Michael Krainin, Deqing Sun, Chia-Kai Liang","doi":"10.1145/3618362","DOIUrl":null,"url":null,"abstract":"DSLR cameras can achieve multiple zoom levels via shifting lens distances or swapping lens types. However, these techniques are not possible on smart-phone devices due to space constraints. Most smartphone manufacturers adopt a hybrid zoom system: commonly a Wide (W) camera at a low zoom level and a Telephoto (T) camera at a high zoom level. To simulate zoom levels between W and T, these systems crop and digitally upsample images from W, leading to significant detail loss. In this paper, we propose an efficient system for hybrid zoom super-resolution on mobile devices, which captures a synchronous pair of W and T shots and leverages machine learning models to align and transfer details from T to W. We further develop an adaptive blending method that accounts for depth-of-field mismatches, scene occlusion, flow uncertainty, and alignment errors. To minimize the domain gap, we design a dual-phone camera rig to capture real-world inputs and ground-truths for supervised training. Our method generates a 12-megapixel image in 500ms on a mobile platform and compares favorably against state-of-the-art methods under extensive evaluation on real-world scenarios.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"6 6","pages":"1 - 12"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Hybrid Zoom Using Camera Fusion on Mobile Phones\",\"authors\":\"Xiaotong Wu, Wei-Sheng Lai, Yi-Chang Shih, Charles Herrmann, Michael Krainin, Deqing Sun, Chia-Kai Liang\",\"doi\":\"10.1145/3618362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DSLR cameras can achieve multiple zoom levels via shifting lens distances or swapping lens types. However, these techniques are not possible on smart-phone devices due to space constraints. Most smartphone manufacturers adopt a hybrid zoom system: commonly a Wide (W) camera at a low zoom level and a Telephoto (T) camera at a high zoom level. To simulate zoom levels between W and T, these systems crop and digitally upsample images from W, leading to significant detail loss. In this paper, we propose an efficient system for hybrid zoom super-resolution on mobile devices, which captures a synchronous pair of W and T shots and leverages machine learning models to align and transfer details from T to W. We further develop an adaptive blending method that accounts for depth-of-field mismatches, scene occlusion, flow uncertainty, and alignment errors. To minimize the domain gap, we design a dual-phone camera rig to capture real-world inputs and ground-truths for supervised training. Our method generates a 12-megapixel image in 500ms on a mobile platform and compares favorably against state-of-the-art methods under extensive evaluation on real-world scenarios.\",\"PeriodicalId\":7077,\"journal\":{\"name\":\"ACM Transactions on Graphics (TOG)\",\"volume\":\"6 6\",\"pages\":\"1 - 12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics (TOG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3618362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3618362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数码单反相机可以通过改变镜头距离或切换镜头类型来实现多种变焦级别。然而,由于空间限制,这些技术在智能手机设备上是不可能的。大多数智能手机制造商采用混合变焦系统:通常是低变焦水平的广角(W)相机和高变焦水平的远摄(T)相机。为了模拟W和T之间的变焦水平,这些系统从W裁剪和数字上采样图像,导致显著的细节损失。在本文中,我们提出了一种高效的移动设备混合变焦超分辨率系统,该系统捕获同步的W和T对镜头,并利用机器学习模型将细节从T对齐和传输到W。我们进一步开发了一种自适应混合方法,该方法考虑了景深不匹配、场景遮挡、流不确定性和对齐误差。为了最大限度地减少领域差距,我们设计了一个双手机摄像头来捕捉现实世界的输入和监督训练的真实情况。我们的方法在500毫秒内在移动平台上生成1200万像素的图像,并在真实场景的广泛评估下与最先进的方法相比具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Hybrid Zoom Using Camera Fusion on Mobile Phones
DSLR cameras can achieve multiple zoom levels via shifting lens distances or swapping lens types. However, these techniques are not possible on smart-phone devices due to space constraints. Most smartphone manufacturers adopt a hybrid zoom system: commonly a Wide (W) camera at a low zoom level and a Telephoto (T) camera at a high zoom level. To simulate zoom levels between W and T, these systems crop and digitally upsample images from W, leading to significant detail loss. In this paper, we propose an efficient system for hybrid zoom super-resolution on mobile devices, which captures a synchronous pair of W and T shots and leverages machine learning models to align and transfer details from T to W. We further develop an adaptive blending method that accounts for depth-of-field mismatches, scene occlusion, flow uncertainty, and alignment errors. To minimize the domain gap, we design a dual-phone camera rig to capture real-world inputs and ground-truths for supervised training. Our method generates a 12-megapixel image in 500ms on a mobile platform and compares favorably against state-of-the-art methods under extensive evaluation on real-world scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GeoLatent: A Geometric Approach to Latent Space Design for Deformable Shape Generators An Implicit Neural Representation for the Image Stack: Depth, All in Focus, and High Dynamic Range Rectifying Strip Patterns From Skin to Skeleton: Towards Biomechanically Accurate 3D Digital Humans Warped-Area Reparameterization of Differential Path Integrals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1