氟化石墨烯及其聚酰亚胺复合材料的绝缘性和导热性研究进展

IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Nanodielectrics Pub Date : 2023-12-04 DOI:10.1049/nde2.12068
Xin Wang, Shuyan Liu, Haoyu Han, Xiangyang Liu, Xu Wang
{"title":"氟化石墨烯及其聚酰亚胺复合材料的绝缘性和导热性研究进展","authors":"Xin Wang,&nbsp;Shuyan Liu,&nbsp;Haoyu Han,&nbsp;Xiangyang Liu,&nbsp;Xu Wang","doi":"10.1049/nde2.12068","DOIUrl":null,"url":null,"abstract":"<p>The demand for innovative thermal management materials with superior thermal conductivity and electrical insulating properties has significantly increased with the development of portable and flexible electronic gadgets. Fluorinated graphene (FG) has recently attracted the attention of the scientific community because of its exceptional thermal conductivity and electrical insulating qualities. This work aims to provide a detailed analysis of the structure-property relationships inherent in FG, including both chemical and physical properties, and to explain the FG manufacturing process. Special attention should be paid to a thorough analysis of the thermodynamic conduction mechanism exhibited by FG, including the effects of corrugation size, fluorine coverage, and fluorine atom distribution on its thermal conductivity. The essay also examines in-depth the most current and cutting-edge developments addressing the utilisation of FG as a functional filler in composite-modified polyimide (PI) materials. Furthermore, it has been noted as a crucial component in answering the needs for possible applications by maximising thermal conductivity and mechanical qualities in FG/PI composites through particular FG structural engineering and increased FG-PI interaction. As a result, these elements serve as the main focus of ongoing research projects, highlighting important directions for development and investigation.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12068","citationCount":"0","resultStr":"{\"title\":\"Research progress in insulating and thermal conductivity of fluorinated graphene and its polyimide composites\",\"authors\":\"Xin Wang,&nbsp;Shuyan Liu,&nbsp;Haoyu Han,&nbsp;Xiangyang Liu,&nbsp;Xu Wang\",\"doi\":\"10.1049/nde2.12068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The demand for innovative thermal management materials with superior thermal conductivity and electrical insulating properties has significantly increased with the development of portable and flexible electronic gadgets. Fluorinated graphene (FG) has recently attracted the attention of the scientific community because of its exceptional thermal conductivity and electrical insulating qualities. This work aims to provide a detailed analysis of the structure-property relationships inherent in FG, including both chemical and physical properties, and to explain the FG manufacturing process. Special attention should be paid to a thorough analysis of the thermodynamic conduction mechanism exhibited by FG, including the effects of corrugation size, fluorine coverage, and fluorine atom distribution on its thermal conductivity. The essay also examines in-depth the most current and cutting-edge developments addressing the utilisation of FG as a functional filler in composite-modified polyimide (PI) materials. Furthermore, it has been noted as a crucial component in answering the needs for possible applications by maximising thermal conductivity and mechanical qualities in FG/PI composites through particular FG structural engineering and increased FG-PI interaction. As a result, these elements serve as the main focus of ongoing research projects, highlighting important directions for development and investigation.</p>\",\"PeriodicalId\":36855,\"journal\":{\"name\":\"IET Nanodielectrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12068\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Nanodielectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着便携式和柔性电子产品的发展,对具有优异导热性和电绝缘性能的创新热管理材料的需求显著增加。氟化石墨烯(FG)由于其优异的导热性和电绝缘性能,最近引起了科学界的关注。这项工作的目的是提供FG固有的结构-性质关系的详细分析,包括化学和物理性质,并解释FG的制造过程。特别需要注意的是对FG所表现出的热力学传导机制进行深入的分析,包括波纹尺寸、氟覆盖范围和氟原子分布对其导热性的影响。本文还深入研究了在复合改性聚酰亚胺(PI)材料中使用FG作为功能填料的最新和最前沿的发展。此外,它被认为是通过特殊的FG结构工程和增加FG - PI相互作用来最大限度地提高FG/PI复合材料的导热性和机械质量,以满足潜在应用需求的关键组成部分。因此,这些元素成为正在进行的研究项目的主要焦点,突出了发展和研究的重要方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research progress in insulating and thermal conductivity of fluorinated graphene and its polyimide composites

The demand for innovative thermal management materials with superior thermal conductivity and electrical insulating properties has significantly increased with the development of portable and flexible electronic gadgets. Fluorinated graphene (FG) has recently attracted the attention of the scientific community because of its exceptional thermal conductivity and electrical insulating qualities. This work aims to provide a detailed analysis of the structure-property relationships inherent in FG, including both chemical and physical properties, and to explain the FG manufacturing process. Special attention should be paid to a thorough analysis of the thermodynamic conduction mechanism exhibited by FG, including the effects of corrugation size, fluorine coverage, and fluorine atom distribution on its thermal conductivity. The essay also examines in-depth the most current and cutting-edge developments addressing the utilisation of FG as a functional filler in composite-modified polyimide (PI) materials. Furthermore, it has been noted as a crucial component in answering the needs for possible applications by maximising thermal conductivity and mechanical qualities in FG/PI composites through particular FG structural engineering and increased FG-PI interaction. As a result, these elements serve as the main focus of ongoing research projects, highlighting important directions for development and investigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Nanodielectrics
IET Nanodielectrics Materials Science-Materials Chemistry
CiteScore
5.60
自引率
3.70%
发文量
7
审稿时长
21 weeks
期刊最新文献
A combined technique for power transformer fault diagnosis based on k-means clustering and support vector machine Stability of giant dielectric properties in co‐doped rutile TiO2 ceramics under temperature and humidity High‐performance sulphur dioxide sensor: Unveiling the potential of photonic crystal fibre technology Improvement in non-linear electrical conductivity of silicone rubber by incorporating zinc oxide fillers and grafting small polar molecules Traditional fault diagnosis methods for mineral oil-immersed power transformer based on dissolved gas analysis: Past, present and future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1