M. Y. Yadgari, S. Subat, S. Rashid, S. Ullah, L. Li, M. A. Hassani, H. Emiliya, G. Rukh
{"title":"水资源中砷的毒性效应及其通过硫醇化掺钴银纳米材料的吸附作用","authors":"M. Y. Yadgari, S. Subat, S. Rashid, S. Ullah, L. Li, M. A. Hassani, H. Emiliya, G. Rukh","doi":"10.15251/djnb.2023.184.1339","DOIUrl":null,"url":null,"abstract":"Recently, the rapid increase in population and industrialization has been created a lot of problems to water resources around the world. Most of the world population are exposed directly or indirectly towards heavy metals (HMs) such as Arsenic (As) contamination and thus making the water resources unfit for drinking and other human purposes. The current study was planned to find the As adsorption potential of novel thiolated cobalt-doped silver nanoparticles (Co-Ag NPs) under various environmental setups. In present work the Co-Ag NPs of sizes (20–22 nm) were synthesized through co-precipitation process. Adsorption of As with Co-Ag NPs was tested in batch experiments with respect light, pH and competing anions. Overall, the Co-Ag NPs effectively adsorbed the As in presence of sunlight (100%) and neutral pH (>99%). The removal of As was maximum (>99%) at CoAg NPs:As ratio of < 0.5:1. Similarly, the synthesized Co-Ag NPs did not showed the goodadsorption efficiency in dark condition about (21.4%) and only (11.1%) uptake at low and high pH respectively. Results of the current study showed that Co-Ag NPs can efficiently adsorb the As and reduce to non-toxic form i.e. below the WHO standard limit (10 µg/L)in drinking water.","PeriodicalId":11233,"journal":{"name":"Digest Journal of Nanomaterials and Biostructures","volume":"66 26","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxic effects of arsenic and its adsorption through thiolated cobalt doped silver nanomaterials from water resources\",\"authors\":\"M. Y. Yadgari, S. Subat, S. Rashid, S. Ullah, L. Li, M. A. Hassani, H. Emiliya, G. Rukh\",\"doi\":\"10.15251/djnb.2023.184.1339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the rapid increase in population and industrialization has been created a lot of problems to water resources around the world. Most of the world population are exposed directly or indirectly towards heavy metals (HMs) such as Arsenic (As) contamination and thus making the water resources unfit for drinking and other human purposes. The current study was planned to find the As adsorption potential of novel thiolated cobalt-doped silver nanoparticles (Co-Ag NPs) under various environmental setups. In present work the Co-Ag NPs of sizes (20–22 nm) were synthesized through co-precipitation process. Adsorption of As with Co-Ag NPs was tested in batch experiments with respect light, pH and competing anions. Overall, the Co-Ag NPs effectively adsorbed the As in presence of sunlight (100%) and neutral pH (>99%). The removal of As was maximum (>99%) at CoAg NPs:As ratio of < 0.5:1. Similarly, the synthesized Co-Ag NPs did not showed the goodadsorption efficiency in dark condition about (21.4%) and only (11.1%) uptake at low and high pH respectively. Results of the current study showed that Co-Ag NPs can efficiently adsorb the As and reduce to non-toxic form i.e. below the WHO standard limit (10 µg/L)in drinking water.\",\"PeriodicalId\":11233,\"journal\":{\"name\":\"Digest Journal of Nanomaterials and Biostructures\",\"volume\":\"66 26\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest Journal of Nanomaterials and Biostructures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/djnb.2023.184.1339\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest Journal of Nanomaterials and Biostructures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/djnb.2023.184.1339","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Toxic effects of arsenic and its adsorption through thiolated cobalt doped silver nanomaterials from water resources
Recently, the rapid increase in population and industrialization has been created a lot of problems to water resources around the world. Most of the world population are exposed directly or indirectly towards heavy metals (HMs) such as Arsenic (As) contamination and thus making the water resources unfit for drinking and other human purposes. The current study was planned to find the As adsorption potential of novel thiolated cobalt-doped silver nanoparticles (Co-Ag NPs) under various environmental setups. In present work the Co-Ag NPs of sizes (20–22 nm) were synthesized through co-precipitation process. Adsorption of As with Co-Ag NPs was tested in batch experiments with respect light, pH and competing anions. Overall, the Co-Ag NPs effectively adsorbed the As in presence of sunlight (100%) and neutral pH (>99%). The removal of As was maximum (>99%) at CoAg NPs:As ratio of < 0.5:1. Similarly, the synthesized Co-Ag NPs did not showed the goodadsorption efficiency in dark condition about (21.4%) and only (11.1%) uptake at low and high pH respectively. Results of the current study showed that Co-Ag NPs can efficiently adsorb the As and reduce to non-toxic form i.e. below the WHO standard limit (10 µg/L)in drinking water.