通过透皮给药改善抗疟药物不良依从性:隧道尽头的新曙光

C. E. Agbo, U. E. Chima, Sunday Chibueze Ogbobe, Faith O Omotayo, Success Chekwubechukwu David
{"title":"通过透皮给药改善抗疟药物不良依从性:隧道尽头的新曙光","authors":"C. E. Agbo, U. E. Chima, Sunday Chibueze Ogbobe, Faith O Omotayo, Success Chekwubechukwu David","doi":"10.25259/ajbps_14_2023","DOIUrl":null,"url":null,"abstract":"Malaria, a perilous disease caused by Plasmodium parasites and characterized by a substantial mortality rate, has persistently posed as a global health challenge. Conventional antimalarial formulations, although effective, grapple with issues surrounding their bioavailability and palatability, and potentially hampering patient adherence and inadvertently fueling drug resistance and poor treatment outcomes. This paper meticulously delves into the predicaments associated with prevailing antimalarial delivery methods – oral, intravenous, and intramuscular. The paper navigates through the compelling merits of the transdermal pathway, drawing inspiration from its triumphant deployment in other medical realms. The investigation extends to encompass preclinical inquiries dedicated to exploring the transdermal administration of antimalarials. Transdermal antimalarials have shown complete suppression and elimination of Plasmodium parasites, as suggested by the preclinical studies. These preclinical studies emerge as a beacon of hope, exhibiting heightened bioavailability, enhanced safety margins, and notable cost-effectiveness when compared with oral antimalarials. Moreover, this innovative avenue for drug delivery not only offers convenience but also holds the potential to be a transformative solution to the adherence problems of traditional antimalarials, which currently afflicts standard therapeutic options.","PeriodicalId":93408,"journal":{"name":"American journal of biopharmacy and pharmaceutical sciences","volume":"60 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transdermal antimalarial drug delivery to improve poor adherence to antimalarials: A new light at the end of the tunnel\",\"authors\":\"C. E. Agbo, U. E. Chima, Sunday Chibueze Ogbobe, Faith O Omotayo, Success Chekwubechukwu David\",\"doi\":\"10.25259/ajbps_14_2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malaria, a perilous disease caused by Plasmodium parasites and characterized by a substantial mortality rate, has persistently posed as a global health challenge. Conventional antimalarial formulations, although effective, grapple with issues surrounding their bioavailability and palatability, and potentially hampering patient adherence and inadvertently fueling drug resistance and poor treatment outcomes. This paper meticulously delves into the predicaments associated with prevailing antimalarial delivery methods – oral, intravenous, and intramuscular. The paper navigates through the compelling merits of the transdermal pathway, drawing inspiration from its triumphant deployment in other medical realms. The investigation extends to encompass preclinical inquiries dedicated to exploring the transdermal administration of antimalarials. Transdermal antimalarials have shown complete suppression and elimination of Plasmodium parasites, as suggested by the preclinical studies. These preclinical studies emerge as a beacon of hope, exhibiting heightened bioavailability, enhanced safety margins, and notable cost-effectiveness when compared with oral antimalarials. Moreover, this innovative avenue for drug delivery not only offers convenience but also holds the potential to be a transformative solution to the adherence problems of traditional antimalarials, which currently afflicts standard therapeutic options.\",\"PeriodicalId\":93408,\"journal\":{\"name\":\"American journal of biopharmacy and pharmaceutical sciences\",\"volume\":\"60 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of biopharmacy and pharmaceutical sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25259/ajbps_14_2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of biopharmacy and pharmaceutical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25259/ajbps_14_2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

疟疾是由疟原虫引起的一种危险疾病,其特点是死亡率很高,一直是全球健康的挑战。传统的抗疟制剂虽然有效,但存在生物利用度和适口性方面的问题,可能会阻碍患者的依从性,并在无意中助长耐药性和不良治疗结果。本文细致地探讨了与流行的抗疟药物递送方法——口服、静脉注射和肌肉注射——相关的困境。本文导航通过透皮途径的引人注目的优点,从它的胜利部署在其他医学领域的灵感。调查扩展到包括临床前调查,致力于探索抗疟药的经皮给药。经皮抗疟药已显示出完全抑制和消除疟原虫的临床前研究结果。与口服抗疟药相比,这些临床前研究显示出更高的生物利用度、更高的安全边际和显著的成本效益,成为希望的灯塔。此外,这种创新的给药途径不仅提供了便利,而且有可能成为解决传统抗疟药物依从性问题的变革性解决方案,这一问题目前困扰着标准治疗方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transdermal antimalarial drug delivery to improve poor adherence to antimalarials: A new light at the end of the tunnel
Malaria, a perilous disease caused by Plasmodium parasites and characterized by a substantial mortality rate, has persistently posed as a global health challenge. Conventional antimalarial formulations, although effective, grapple with issues surrounding their bioavailability and palatability, and potentially hampering patient adherence and inadvertently fueling drug resistance and poor treatment outcomes. This paper meticulously delves into the predicaments associated with prevailing antimalarial delivery methods – oral, intravenous, and intramuscular. The paper navigates through the compelling merits of the transdermal pathway, drawing inspiration from its triumphant deployment in other medical realms. The investigation extends to encompass preclinical inquiries dedicated to exploring the transdermal administration of antimalarials. Transdermal antimalarials have shown complete suppression and elimination of Plasmodium parasites, as suggested by the preclinical studies. These preclinical studies emerge as a beacon of hope, exhibiting heightened bioavailability, enhanced safety margins, and notable cost-effectiveness when compared with oral antimalarials. Moreover, this innovative avenue for drug delivery not only offers convenience but also holds the potential to be a transformative solution to the adherence problems of traditional antimalarials, which currently afflicts standard therapeutic options.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emerging contaminants at trace levels of pesticides perturbs biomolecules in different organs in mice: Role of peroxisome proliferator-activated receptor-alpha A detailed review of immunotherapeutics with a special emphasis on hybridoma technology Angelman syndrome: A genetic challenge for physical and learning disabilities Molecular and qualitative characterization of compatibility between valacyclovir hydrochloride and excipients as raw materials for the development of solid oral dosage formulation Complete Freund’s adjuvant-induced arthritis in rats: Anti-inflammatory and antioxidant properties of Allanblackia gabonensis (guttiferae) aqueous extract
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1