{"title":"利用机器学习技术提高智能输电线路的故障识别能力","authors":"Radhika Venkutuswamy, Baskaran Kaliyaperumal","doi":"10.11591/ijape.v12.i4.pp359-366","DOIUrl":null,"url":null,"abstract":"In this work inevitable for power transmission boards such as Tamil Nadu Generation and Distribution Corporation Limited (TANGEDCO) to look for a low-cost communication system with low power usage and to improve supply reliability, to transmit reliable fault information back to the control centre in real time. This work aims to design an automated and effective fault identification and position system for all overhead power transmission network networks using all current fault indicator technologies, machine learning methods, and commercially tested communication technology to easily and reliably pin a transmission system's flawed point parts. This will help to people avoid touching the electrical wire and prevent electrical shocks and current wastage as well. Smart transmission lines have played a decisive role in developing human protection and preventing current wastage. The transmission line is opened and the state of the line is evaluated, and the information goes to electrical board (EB) office. The system monitors the data by sending the alert message to the person responsible for the GPS location, either via SMS or BUZZER, or by displaying the alert message lives. Transmission line distribution is broad and most of them are spread around the geographical environment.","PeriodicalId":340072,"journal":{"name":"International Journal of Applied Power Engineering (IJAPE)","volume":"102 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving fault identification in smart transmission line using machine learning technique\",\"authors\":\"Radhika Venkutuswamy, Baskaran Kaliyaperumal\",\"doi\":\"10.11591/ijape.v12.i4.pp359-366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work inevitable for power transmission boards such as Tamil Nadu Generation and Distribution Corporation Limited (TANGEDCO) to look for a low-cost communication system with low power usage and to improve supply reliability, to transmit reliable fault information back to the control centre in real time. This work aims to design an automated and effective fault identification and position system for all overhead power transmission network networks using all current fault indicator technologies, machine learning methods, and commercially tested communication technology to easily and reliably pin a transmission system's flawed point parts. This will help to people avoid touching the electrical wire and prevent electrical shocks and current wastage as well. Smart transmission lines have played a decisive role in developing human protection and preventing current wastage. The transmission line is opened and the state of the line is evaluated, and the information goes to electrical board (EB) office. The system monitors the data by sending the alert message to the person responsible for the GPS location, either via SMS or BUZZER, or by displaying the alert message lives. Transmission line distribution is broad and most of them are spread around the geographical environment.\",\"PeriodicalId\":340072,\"journal\":{\"name\":\"International Journal of Applied Power Engineering (IJAPE)\",\"volume\":\"102 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Power Engineering (IJAPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijape.v12.i4.pp359-366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Power Engineering (IJAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijape.v12.i4.pp359-366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving fault identification in smart transmission line using machine learning technique
In this work inevitable for power transmission boards such as Tamil Nadu Generation and Distribution Corporation Limited (TANGEDCO) to look for a low-cost communication system with low power usage and to improve supply reliability, to transmit reliable fault information back to the control centre in real time. This work aims to design an automated and effective fault identification and position system for all overhead power transmission network networks using all current fault indicator technologies, machine learning methods, and commercially tested communication technology to easily and reliably pin a transmission system's flawed point parts. This will help to people avoid touching the electrical wire and prevent electrical shocks and current wastage as well. Smart transmission lines have played a decisive role in developing human protection and preventing current wastage. The transmission line is opened and the state of the line is evaluated, and the information goes to electrical board (EB) office. The system monitors the data by sending the alert message to the person responsible for the GPS location, either via SMS or BUZZER, or by displaying the alert message lives. Transmission line distribution is broad and most of them are spread around the geographical environment.