用于气井液体负荷预测的深度回归方法

IF 3.2 3区 工程技术 Q1 ENGINEERING, PETROLEUM SPE Journal Pub Date : 2023-12-01 DOI:10.2118/218387-pa
Yan Chen, Bo Miao, Yang Wang, Yunan Huang, YuQiang Jiang, Xiangchao Shi
{"title":"用于气井液体负荷预测的深度回归方法","authors":"Yan Chen, Bo Miao, Yang Wang, Yunan Huang, YuQiang Jiang, Xiangchao Shi","doi":"10.2118/218387-pa","DOIUrl":null,"url":null,"abstract":"\n Liquid loading occurs when gas production falls below the critical liquid-carrying flow rate of the gas well, resulting in the inability to remove the condensate or water in the gas well. Liquid loading can lead to a sharp reduction in production, which affects the gas well ultimate recovery. Accurate prediction of the timing of liquid loading is important for implementing mitigations that reduce liquid accumulation in the production tubing and prevent gas production impairment, as well as for the stability of production. Existing liquid-loading forecasting methods have a time offset in the determination of liquid loading, and there is great variation in the results for different gas wells. Currently, supervisory control and data acquisition (SCADA) systems are widely used for gas well production data acquisition, but the data are not effectively utilized. Deep machine learning techniques are applied to the field data from gas wells and have achieved significant effectiveness. In this study, a bidirectional long short-term memory network (Bi-LSTM) was used to conduct feature extraction on the production data, and the extracted feature was spliced together with the geological and engineering parameter feature. These features were combined with self-attention mechanisms to predict the time of the next liquid loading. Because the modeling results fit the actual liquid loading in production scenarios better, our method also customizes the loss functions. Experimental verification was conducted using actual production data from 13 gas wells. The recall was 1 and F1 was 0.87 for the experimental data in the model, and the customized loss function led to a 6.5% improvement in F1. The experimental results verify that our method can accurately forecast liquid-loading onset in gas wells in a timely manner, which can help reduce costs and increase efficiency in shale gas production.","PeriodicalId":22252,"journal":{"name":"SPE Journal","volume":" 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Regression Method for Gas Well Liquid Loading Prediction\",\"authors\":\"Yan Chen, Bo Miao, Yang Wang, Yunan Huang, YuQiang Jiang, Xiangchao Shi\",\"doi\":\"10.2118/218387-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Liquid loading occurs when gas production falls below the critical liquid-carrying flow rate of the gas well, resulting in the inability to remove the condensate or water in the gas well. Liquid loading can lead to a sharp reduction in production, which affects the gas well ultimate recovery. Accurate prediction of the timing of liquid loading is important for implementing mitigations that reduce liquid accumulation in the production tubing and prevent gas production impairment, as well as for the stability of production. Existing liquid-loading forecasting methods have a time offset in the determination of liquid loading, and there is great variation in the results for different gas wells. Currently, supervisory control and data acquisition (SCADA) systems are widely used for gas well production data acquisition, but the data are not effectively utilized. Deep machine learning techniques are applied to the field data from gas wells and have achieved significant effectiveness. In this study, a bidirectional long short-term memory network (Bi-LSTM) was used to conduct feature extraction on the production data, and the extracted feature was spliced together with the geological and engineering parameter feature. These features were combined with self-attention mechanisms to predict the time of the next liquid loading. Because the modeling results fit the actual liquid loading in production scenarios better, our method also customizes the loss functions. Experimental verification was conducted using actual production data from 13 gas wells. The recall was 1 and F1 was 0.87 for the experimental data in the model, and the customized loss function led to a 6.5% improvement in F1. The experimental results verify that our method can accurately forecast liquid-loading onset in gas wells in a timely manner, which can help reduce costs and increase efficiency in shale gas production.\",\"PeriodicalId\":22252,\"journal\":{\"name\":\"SPE Journal\",\"volume\":\" 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/218387-pa\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/218387-pa","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 0

摘要

当产气量低于气井的临界携液流量时,就会出现液载现象,导致气井中的凝析液或水无法排出。液体负荷会导致产量急剧下降,从而影响气井的最终采收率。准确预测液体加载时间对于实施缓解措施,减少生产油管中的液体积聚,防止产气受损,以及稳定生产非常重要。现有的液载预测方法在确定液载时存在时间偏移,不同气井的液载预测结果差异较大。目前,监控与数据采集(SCADA)系统被广泛用于气井生产数据采集,但数据没有得到有效利用。深度机器学习技术应用于气井的现场数据,并取得了显著的效果。本研究采用双向长短期记忆网络(Bi-LSTM)对生产数据进行特征提取,并将提取的特征与地质工程参数特征拼接在一起。这些特征与自我注意机制相结合,以预测下一次液体加载的时间。由于建模结果更符合生产场景中的实际液体负荷,我们的方法还定制了损失函数。利用13口气井的实际生产数据进行了实验验证。模型中实验数据的召回率为1,F1为0.87,定制的损失函数使F1提高了6.5%。实验结果表明,该方法能够准确、及时地预测气井液载开始,有助于降低页岩气生产成本,提高页岩气生产效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deep Regression Method for Gas Well Liquid Loading Prediction
Liquid loading occurs when gas production falls below the critical liquid-carrying flow rate of the gas well, resulting in the inability to remove the condensate or water in the gas well. Liquid loading can lead to a sharp reduction in production, which affects the gas well ultimate recovery. Accurate prediction of the timing of liquid loading is important for implementing mitigations that reduce liquid accumulation in the production tubing and prevent gas production impairment, as well as for the stability of production. Existing liquid-loading forecasting methods have a time offset in the determination of liquid loading, and there is great variation in the results for different gas wells. Currently, supervisory control and data acquisition (SCADA) systems are widely used for gas well production data acquisition, but the data are not effectively utilized. Deep machine learning techniques are applied to the field data from gas wells and have achieved significant effectiveness. In this study, a bidirectional long short-term memory network (Bi-LSTM) was used to conduct feature extraction on the production data, and the extracted feature was spliced together with the geological and engineering parameter feature. These features were combined with self-attention mechanisms to predict the time of the next liquid loading. Because the modeling results fit the actual liquid loading in production scenarios better, our method also customizes the loss functions. Experimental verification was conducted using actual production data from 13 gas wells. The recall was 1 and F1 was 0.87 for the experimental data in the model, and the customized loss function led to a 6.5% improvement in F1. The experimental results verify that our method can accurately forecast liquid-loading onset in gas wells in a timely manner, which can help reduce costs and increase efficiency in shale gas production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SPE Journal
SPE Journal 工程技术-工程:石油
CiteScore
7.20
自引率
11.10%
发文量
229
审稿时长
4.5 months
期刊介绍: Covers theories and emerging concepts spanning all aspects of engineering for oil and gas exploration and production, including reservoir characterization, multiphase flow, drilling dynamics, well architecture, gas well deliverability, numerical simulation, enhanced oil recovery, CO2 sequestration, and benchmarking and performance indicators.
期刊最新文献
Sensitivity Analysis and Comparative Study for Different Detection Modes of Logging-While-Drilling Ultradeep Azimuthal Electromagnetic Tools A Grain Size Profile Prediction Method Based on Combined Model of Extreme Gradient Boosting and Artificial Neural Network and Its Application in Sand Control Design Dynamic Scaling Prediction Model and Application in Near-Wellbore Formation of Ultradeep Natural Gas Reservoirs Injection Temperature Impacts on Reservoir Response during CO2 Storage Virtual Meter with Flow Pattern Recognition Using Deep Learning Neural Networks: Experiments and Analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1