{"title":"氩粒子和反粒子相互作用的差异研究:现状与未来的可能性","authors":"R. D. DuBois, K. Tőkési","doi":"10.3390/atoms11120151","DOIUrl":null,"url":null,"abstract":"Although the comparison of fully differential ionization data for particle and antiparticle impact provides the ultimate tests of theoretical models, only very low antiparticle beam intensities are available. Hence, few experiments of this type have been performed. Therefore, available experimentally obtained single and double differential cross-sections, which are much easier to obtain, are compared in order to demonstrate differences when only the projectile mass or charge (+1 or −1) is changed. Included in the comparison are cross-sections calculated for positron and electron impact using a three-particle classical trajectory Monte Carlo method. The calculated cross-sections provide independent information about the ejected electron and the scattered projectile contributions, plus information about the impact parameters, all as functions of the collision kinematics. From these comparisons, suggestions as to where future investigations are both feasible and useful are provided.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" 18","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential Studies of Argon Particle and Antiparticle Interactions: Present Status and Future Possibilities\",\"authors\":\"R. D. DuBois, K. Tőkési\",\"doi\":\"10.3390/atoms11120151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the comparison of fully differential ionization data for particle and antiparticle impact provides the ultimate tests of theoretical models, only very low antiparticle beam intensities are available. Hence, few experiments of this type have been performed. Therefore, available experimentally obtained single and double differential cross-sections, which are much easier to obtain, are compared in order to demonstrate differences when only the projectile mass or charge (+1 or −1) is changed. Included in the comparison are cross-sections calculated for positron and electron impact using a three-particle classical trajectory Monte Carlo method. The calculated cross-sections provide independent information about the ejected electron and the scattered projectile contributions, plus information about the impact parameters, all as functions of the collision kinematics. From these comparisons, suggestions as to where future investigations are both feasible and useful are provided.\",\"PeriodicalId\":8629,\"journal\":{\"name\":\"Atoms\",\"volume\":\" 18\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atoms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/atoms11120151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11120151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Differential Studies of Argon Particle and Antiparticle Interactions: Present Status and Future Possibilities
Although the comparison of fully differential ionization data for particle and antiparticle impact provides the ultimate tests of theoretical models, only very low antiparticle beam intensities are available. Hence, few experiments of this type have been performed. Therefore, available experimentally obtained single and double differential cross-sections, which are much easier to obtain, are compared in order to demonstrate differences when only the projectile mass or charge (+1 or −1) is changed. Included in the comparison are cross-sections calculated for positron and electron impact using a three-particle classical trajectory Monte Carlo method. The calculated cross-sections provide independent information about the ejected electron and the scattered projectile contributions, plus information about the impact parameters, all as functions of the collision kinematics. From these comparisons, suggestions as to where future investigations are both feasible and useful are provided.
AtomsPhysics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍:
Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions