Annisa Istiqomah Arrahmah, Rissa Rahmania, D. E. Saputra
{"title":"用于小尺寸物体检测的固态硬盘架构评估:用于小尺寸物体检测的固态硬盘架构评估:无人机石油管道监测案例研究固态硬盘架构评估:无人机石油管道监测案例研究无人机石油管道监控案例研究","authors":"Annisa Istiqomah Arrahmah, Rissa Rahmania, D. E. Saputra","doi":"10.18178/joig.11.4.384-390","DOIUrl":null,"url":null,"abstract":"Oil pipeline monitoring using Unmanned Airborne Vehicles (UAV) can be done by utilizing Deep Learning. Deep Learning can be used to automatically detect harmed or unauthorized objects near the pipeline for further action by the authority. Input video in the pipeline area taken from the UAV has unique characteristics. It has low resolution with dense composition object in the image. The detected object also has a small scale as the objects are far away from the UAV. Thus, the selection of the Deep Learning algorithm is important to get a desirable result with the following conditions. Single Shot Multi-Box (SSD) is one of the popular Deep Learning algorithms with fast calculation compared to others and suitable for real-time object detection. Previous works on this topic using low to medium altitude dataset (20–200 m). This paper provides an evaluation of SSD implementation to detect vehicles on high-altitude dataset (300 m). As much as 2482 dataset is fed into SSD architecture and trained to detect 3 class of vehicles. The result shows the mAP and mAR are 0.026360 and 0.067377, respectively. However, the low lost function value shows that the model is able to classify the object correctly. In conclusion, the SSD cannot process low density information to correctly locate the object.","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of SSD Architecture for Small Size Object Detection: A Case Study on UAV Oil Pipeline MonitoringEvaluation of SSD Architecture for Small Size Object Detection: A Case Study on UAV Oil Pipeline Monitoring\",\"authors\":\"Annisa Istiqomah Arrahmah, Rissa Rahmania, D. E. Saputra\",\"doi\":\"10.18178/joig.11.4.384-390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oil pipeline monitoring using Unmanned Airborne Vehicles (UAV) can be done by utilizing Deep Learning. Deep Learning can be used to automatically detect harmed or unauthorized objects near the pipeline for further action by the authority. Input video in the pipeline area taken from the UAV has unique characteristics. It has low resolution with dense composition object in the image. The detected object also has a small scale as the objects are far away from the UAV. Thus, the selection of the Deep Learning algorithm is important to get a desirable result with the following conditions. Single Shot Multi-Box (SSD) is one of the popular Deep Learning algorithms with fast calculation compared to others and suitable for real-time object detection. Previous works on this topic using low to medium altitude dataset (20–200 m). This paper provides an evaluation of SSD implementation to detect vehicles on high-altitude dataset (300 m). As much as 2482 dataset is fed into SSD architecture and trained to detect 3 class of vehicles. The result shows the mAP and mAR are 0.026360 and 0.067377, respectively. However, the low lost function value shows that the model is able to classify the object correctly. In conclusion, the SSD cannot process low density information to correctly locate the object.\",\"PeriodicalId\":36336,\"journal\":{\"name\":\"中国图象图形学报\",\"volume\":\" 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国图象图形学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.18178/joig.11.4.384-390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国图象图形学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.18178/joig.11.4.384-390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Evaluation of SSD Architecture for Small Size Object Detection: A Case Study on UAV Oil Pipeline MonitoringEvaluation of SSD Architecture for Small Size Object Detection: A Case Study on UAV Oil Pipeline Monitoring
Oil pipeline monitoring using Unmanned Airborne Vehicles (UAV) can be done by utilizing Deep Learning. Deep Learning can be used to automatically detect harmed or unauthorized objects near the pipeline for further action by the authority. Input video in the pipeline area taken from the UAV has unique characteristics. It has low resolution with dense composition object in the image. The detected object also has a small scale as the objects are far away from the UAV. Thus, the selection of the Deep Learning algorithm is important to get a desirable result with the following conditions. Single Shot Multi-Box (SSD) is one of the popular Deep Learning algorithms with fast calculation compared to others and suitable for real-time object detection. Previous works on this topic using low to medium altitude dataset (20–200 m). This paper provides an evaluation of SSD implementation to detect vehicles on high-altitude dataset (300 m). As much as 2482 dataset is fed into SSD architecture and trained to detect 3 class of vehicles. The result shows the mAP and mAR are 0.026360 and 0.067377, respectively. However, the low lost function value shows that the model is able to classify the object correctly. In conclusion, the SSD cannot process low density information to correctly locate the object.
中国图象图形学报Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6776
期刊介绍:
Journal of Image and Graphics (ISSN 1006-8961, CN 11-3758/TB, CODEN ZTTXFZ) is an authoritative academic journal supervised by the Chinese Academy of Sciences and co-sponsored by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (ISIAS), the Chinese Society of Image and Graphics (CSIG), and the Beijing Institute of Applied Physics and Computational Mathematics (BIAPM). The journal integrates high-tech theories, technical methods and industrialisation of applied research results in computer image graphics, and mainly publishes innovative and high-level scientific research papers on basic and applied research in image graphics science and its closely related fields. The form of papers includes reviews, technical reports, project progress, academic news, new technology reviews, new product introduction and industrialisation research. The content covers a wide range of fields such as image analysis and recognition, image understanding and computer vision, computer graphics, virtual reality and augmented reality, system simulation, animation, etc., and theme columns are opened according to the research hotspots and cutting-edge topics.
Journal of Image and Graphics reaches a wide range of readers, including scientific and technical personnel, enterprise supervisors, and postgraduates and college students of colleges and universities engaged in the fields of national defence, military, aviation, aerospace, communications, electronics, automotive, agriculture, meteorology, environmental protection, remote sensing, mapping, oil field, construction, transportation, finance, telecommunications, education, medical care, film and television, and art.
Journal of Image and Graphics is included in many important domestic and international scientific literature database systems, including EBSCO database in the United States, JST database in Japan, Scopus database in the Netherlands, China Science and Technology Thesis Statistics and Analysis (Annual Research Report), China Science Citation Database (CSCD), China Academic Journal Network Publishing Database (CAJD), and China Academic Journal Network Publishing Database (CAJD). China Science Citation Database (CSCD), China Academic Journals Network Publishing Database (CAJD), China Academic Journal Abstracts, Chinese Science Abstracts (Series A), China Electronic Science Abstracts, Chinese Core Journals Abstracts, Chinese Academic Journals on CD-ROM, and China Academic Journals Comprehensive Evaluation Database.