聚乙二醇和氧化锌纳米颗粒改性沥青的机械和结构特性探索

Inam Karim, Faisal Iqbal, Niaz Ahmad, Abdul Shakoor, Junaid Naeem
{"title":"聚乙二醇和氧化锌纳米颗粒改性沥青的机械和结构特性探索","authors":"Inam Karim, Faisal Iqbal, Niaz Ahmad, Abdul Shakoor, Junaid Naeem","doi":"10.1177/09673911231217838","DOIUrl":null,"url":null,"abstract":"Bitumen is a petroleum residue that is extensively used as a pavement material. Rutting at high temperatures is one of the limitations of bitumen in warmer regions. The aim of this study is to improve the performance and increase the temperature susceptibility of neat bitumen. In this study, polyethylene glycol (PEG) and nano ZnO have been used to modify the properties of neat bitumen. Four samples were prepared by incorporating PEG and nano-ZnO with a standard laboratory mixer. Polyethylene glycol with 2%, 4%, 6%, and 8% by weight were mixed initially with neat bitumen along with nano ZnO (1.5% and 3%). To check its applicability in the road construction industry, the blends were subjected to mechanical properties tests such as ductility, flash point, fire point, softening point, and penetration test. It was investigated that decrease in ductility ranges from a maximum of 143 (neat bitumen) to a minimum of 83 (8 wt%). Softening point increased from 54°C to a maximum of 59°C (8 wt%). Flash and fire point increase first and then decrease; the optimum content was found to be 6%. The structural properties of blends were investigated using X-ray diffraction. The spectra show there is a shift of peaks in polymer-modified bitumen (PMB) as compared to neat bitumen, which leads to homogeneous mixing. The shift of peaks is because of an increase in interlayer spacing of neat bitumen and a decrease in Bragg’s angle. FT-IR analysis shows the presence of peaks in the range of 3000–2800 cm−1 which confirms the presence of additives in modified bitumen. SEM analysis was conducted to check the quality of dispersion and to investigate the microstructure. ZnO nano particles affect the mechanical properties of samples. The physical properties of polymer-modified bitumen (PMB), PEG, and nano ZnO blends enhance the stiffness of samples at high temperatures.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of mechanical and structural properties of bitumen modified with polyethylene glycol and ZnO-nano particles\",\"authors\":\"Inam Karim, Faisal Iqbal, Niaz Ahmad, Abdul Shakoor, Junaid Naeem\",\"doi\":\"10.1177/09673911231217838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bitumen is a petroleum residue that is extensively used as a pavement material. Rutting at high temperatures is one of the limitations of bitumen in warmer regions. The aim of this study is to improve the performance and increase the temperature susceptibility of neat bitumen. In this study, polyethylene glycol (PEG) and nano ZnO have been used to modify the properties of neat bitumen. Four samples were prepared by incorporating PEG and nano-ZnO with a standard laboratory mixer. Polyethylene glycol with 2%, 4%, 6%, and 8% by weight were mixed initially with neat bitumen along with nano ZnO (1.5% and 3%). To check its applicability in the road construction industry, the blends were subjected to mechanical properties tests such as ductility, flash point, fire point, softening point, and penetration test. It was investigated that decrease in ductility ranges from a maximum of 143 (neat bitumen) to a minimum of 83 (8 wt%). Softening point increased from 54°C to a maximum of 59°C (8 wt%). Flash and fire point increase first and then decrease; the optimum content was found to be 6%. The structural properties of blends were investigated using X-ray diffraction. The spectra show there is a shift of peaks in polymer-modified bitumen (PMB) as compared to neat bitumen, which leads to homogeneous mixing. The shift of peaks is because of an increase in interlayer spacing of neat bitumen and a decrease in Bragg’s angle. FT-IR analysis shows the presence of peaks in the range of 3000–2800 cm−1 which confirms the presence of additives in modified bitumen. SEM analysis was conducted to check the quality of dispersion and to investigate the microstructure. ZnO nano particles affect the mechanical properties of samples. The physical properties of polymer-modified bitumen (PMB), PEG, and nano ZnO blends enhance the stiffness of samples at high temperatures.\",\"PeriodicalId\":20417,\"journal\":{\"name\":\"Polymers and Polymer Composites\",\"volume\":\" 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers and Polymer Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09673911231217838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers and Polymer Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09673911231217838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

沥青是一种石油残渣,广泛用作路面材料。高温下的车辙是沥青在温暖地区的局限性之一。本研究的目的是改善纯沥青的性能,增加其温度敏感性。本研究采用聚乙二醇(PEG)和纳米氧化锌改性纯沥青的性能。将聚乙二醇和纳米氧化锌混合在标准实验室混合器中制备了四种样品。将重量分别为2%、4%、6%和8%的聚乙二醇与纯沥青以及纳米ZnO(1.5%和3%)混合。为了验证其在道路建设行业的适用性,对共混物进行了延性、闪点、火点、软化点和渗透试验等力学性能测试。据调查,延展性的下降范围从最大的143(纯沥青)到最小的83 (8wt %)。软化点从54°C增加到59°C (8wt %)。闪点和火点先增大后减小;发现其最佳含量为6%。用x射线衍射研究了共混物的结构性能。光谱结果表明,聚合物改性沥青(PMB)与纯沥青相比存在峰移,导致混合均匀。峰的位移是由于整齐沥青层间距的增大和布拉格角的减小。FT-IR分析表明,在3000 ~ 2800 cm−1范围内存在峰,证实了改性沥青中添加剂的存在。用扫描电镜分析了分散体的质量和微观结构。ZnO纳米颗粒影响了样品的力学性能。聚合物改性沥青(PMB)、聚乙二醇(PEG)和纳米ZnO共混物的物理性质增强了样品在高温下的刚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploration of mechanical and structural properties of bitumen modified with polyethylene glycol and ZnO-nano particles
Bitumen is a petroleum residue that is extensively used as a pavement material. Rutting at high temperatures is one of the limitations of bitumen in warmer regions. The aim of this study is to improve the performance and increase the temperature susceptibility of neat bitumen. In this study, polyethylene glycol (PEG) and nano ZnO have been used to modify the properties of neat bitumen. Four samples were prepared by incorporating PEG and nano-ZnO with a standard laboratory mixer. Polyethylene glycol with 2%, 4%, 6%, and 8% by weight were mixed initially with neat bitumen along with nano ZnO (1.5% and 3%). To check its applicability in the road construction industry, the blends were subjected to mechanical properties tests such as ductility, flash point, fire point, softening point, and penetration test. It was investigated that decrease in ductility ranges from a maximum of 143 (neat bitumen) to a minimum of 83 (8 wt%). Softening point increased from 54°C to a maximum of 59°C (8 wt%). Flash and fire point increase first and then decrease; the optimum content was found to be 6%. The structural properties of blends were investigated using X-ray diffraction. The spectra show there is a shift of peaks in polymer-modified bitumen (PMB) as compared to neat bitumen, which leads to homogeneous mixing. The shift of peaks is because of an increase in interlayer spacing of neat bitumen and a decrease in Bragg’s angle. FT-IR analysis shows the presence of peaks in the range of 3000–2800 cm−1 which confirms the presence of additives in modified bitumen. SEM analysis was conducted to check the quality of dispersion and to investigate the microstructure. ZnO nano particles affect the mechanical properties of samples. The physical properties of polymer-modified bitumen (PMB), PEG, and nano ZnO blends enhance the stiffness of samples at high temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling and characterising FFF process of semi-crystalline polymers: Warpage formation and mechanism analysis Machine learning non-isothermal study of the blade coating process (NIS-BCP) using non-Newtonian nanofluid with magnetohydrodynamic (MHD) and slip effects Performance of polyurethane and polyurethane nanocomposites modified by graphene, carbon nanotubes, and fumed silica in dry and wet environments Effect of hybrid weaving patterns on mechanical performance of 3D woven structures Investigation of effects of bis(2-hydroxyethyl) terephthalate derived from glycolysis of polyethylene terephthalate on the properties of flexible polyurethane foam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1