基于 R134a-DMF 工作流体对的吸收式热泵机组的模拟与性能研究

Q1 Engineering Energy and Built Environment Pub Date : 2023-12-02 DOI:10.1016/j.enbenv.2023.11.006
Zhaoyi Zhuang , Jin Zhao , Jiapeng Pan , Teng Zhang , Qiang Han
{"title":"基于 R134a-DMF 工作流体对的吸收式热泵机组的模拟与性能研究","authors":"Zhaoyi Zhuang ,&nbsp;Jin Zhao ,&nbsp;Jiapeng Pan ,&nbsp;Teng Zhang ,&nbsp;Qiang Han","doi":"10.1016/j.enbenv.2023.11.006","DOIUrl":null,"url":null,"abstract":"<div><div>R134a-DMF absorption heat pump unit is an energy-saving heat pump unit that can utilize renewable energy, and has great potential in the refrigeration and heating fields of urban and rural areas. The purpose of this article is to conduct in-depth research on the dynamic characteristics of absorption heat pump units based on R134a-DMF, a new working fluid pair. A mathematical model of the thermophysical properties of the R134a-DMF working fluid pair and the mathematical models of various components of the heat pump unit are constructed. This paper constructs a simulation program, and uses the Control variates to study the change trend of the Coefficient of performance of R134a-DMF absorption heat pump unit affected by the generator outlet concentrated solution temperature, condenser air volume and temperature rise, and chilled water outlet temperature. The results indicate that the established mathematical model for thermophysical properties and the unit model are both accurate models, which can provide guidance for the actual operation and optimization of R134a-DMF absorption heat pump units. Through simulation, it can be concluded that for the three combined forms of R134a DMF (3:2), R134a DMF (1:1), and R134a DMF (2:3), the average increase in COP and refrigeration capacity is 0.85 %, 0.39 %, and 0.42 % for each 1 °C increase in the outlet concentrated solution temperature of the generator, respectively, and the growth rate is relatively slow. The larger the proportion of refrigerant in the binary solution, the greater the COP of the unit under the same operating conditions.</div></div>","PeriodicalId":33659,"journal":{"name":"Energy and Built Environment","volume":"6 2","pages":"Pages 307-319"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and performance research of absorption heat pump unit based on R134a-DMF working fluid pair\",\"authors\":\"Zhaoyi Zhuang ,&nbsp;Jin Zhao ,&nbsp;Jiapeng Pan ,&nbsp;Teng Zhang ,&nbsp;Qiang Han\",\"doi\":\"10.1016/j.enbenv.2023.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>R134a-DMF absorption heat pump unit is an energy-saving heat pump unit that can utilize renewable energy, and has great potential in the refrigeration and heating fields of urban and rural areas. The purpose of this article is to conduct in-depth research on the dynamic characteristics of absorption heat pump units based on R134a-DMF, a new working fluid pair. A mathematical model of the thermophysical properties of the R134a-DMF working fluid pair and the mathematical models of various components of the heat pump unit are constructed. This paper constructs a simulation program, and uses the Control variates to study the change trend of the Coefficient of performance of R134a-DMF absorption heat pump unit affected by the generator outlet concentrated solution temperature, condenser air volume and temperature rise, and chilled water outlet temperature. The results indicate that the established mathematical model for thermophysical properties and the unit model are both accurate models, which can provide guidance for the actual operation and optimization of R134a-DMF absorption heat pump units. Through simulation, it can be concluded that for the three combined forms of R134a DMF (3:2), R134a DMF (1:1), and R134a DMF (2:3), the average increase in COP and refrigeration capacity is 0.85 %, 0.39 %, and 0.42 % for each 1 °C increase in the outlet concentrated solution temperature of the generator, respectively, and the growth rate is relatively slow. The larger the proportion of refrigerant in the binary solution, the greater the COP of the unit under the same operating conditions.</div></div>\",\"PeriodicalId\":33659,\"journal\":{\"name\":\"Energy and Built Environment\",\"volume\":\"6 2\",\"pages\":\"Pages 307-319\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and Built Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666123323001101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666123323001101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation and performance research of absorption heat pump unit based on R134a-DMF working fluid pair
R134a-DMF absorption heat pump unit is an energy-saving heat pump unit that can utilize renewable energy, and has great potential in the refrigeration and heating fields of urban and rural areas. The purpose of this article is to conduct in-depth research on the dynamic characteristics of absorption heat pump units based on R134a-DMF, a new working fluid pair. A mathematical model of the thermophysical properties of the R134a-DMF working fluid pair and the mathematical models of various components of the heat pump unit are constructed. This paper constructs a simulation program, and uses the Control variates to study the change trend of the Coefficient of performance of R134a-DMF absorption heat pump unit affected by the generator outlet concentrated solution temperature, condenser air volume and temperature rise, and chilled water outlet temperature. The results indicate that the established mathematical model for thermophysical properties and the unit model are both accurate models, which can provide guidance for the actual operation and optimization of R134a-DMF absorption heat pump units. Through simulation, it can be concluded that for the three combined forms of R134a DMF (3:2), R134a DMF (1:1), and R134a DMF (2:3), the average increase in COP and refrigeration capacity is 0.85 %, 0.39 %, and 0.42 % for each 1 °C increase in the outlet concentrated solution temperature of the generator, respectively, and the growth rate is relatively slow. The larger the proportion of refrigerant in the binary solution, the greater the COP of the unit under the same operating conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and Built Environment
Energy and Built Environment Engineering-Building and Construction
CiteScore
15.90
自引率
0.00%
发文量
104
审稿时长
49 days
期刊最新文献
Editorial Board Editorial Board Editorial Board Overview of the application status and development trends of hydropower and geothermal power in New Zealand Study on the Deposition Characteristics of Fine Particles at Local Components in Air Conditioning Ventilation Ducts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1