芳纶纤维三维编织织物增强热塑性环氧树脂复合材料的低速抗冲击性能

IF 3.6 4区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Journal of Thermoplastic Composite Materials Pub Date : 2023-12-01 DOI:10.1177/08927057231216741
Yajun Liu, T. Natsuki, Daisuke Suzuki, Canyi Huang, Lina Cui, Q. Ni
{"title":"芳纶纤维三维编织织物增强热塑性环氧树脂复合材料的低速抗冲击性能","authors":"Yajun Liu, T. Natsuki, Daisuke Suzuki, Canyi Huang, Lina Cui, Q. Ni","doi":"10.1177/08927057231216741","DOIUrl":null,"url":null,"abstract":"The development of impact-resistant composite materials for protective applications such as helmet and body armor has attracted considerable attention. In this study, a novel aramid fiber-woven thermoplastic-epoxy composite was developed. Furthermore, three types of woven textiles, namely three-dimensional (3D) orthogonal-woven (3DOW), 3D angle-interlock woven (3DAIW), and two-dimensional plain-woven (2DPW) textiles, were used as reinforcement structures. To study the effect of the woven structure, impact energy, and damage repairment on impact-resistance performance of these composites, low-velocity drop-weight impact tests with various impact scenarios, such as single-impact, repeated-impact, as well as multiple-impact with hot-press damage repairment, were conducted. The results revealed that the woven structure exhibited an obvious effect on the composite impact-resistance performance and failure modes when subjected to specific impact scenarios. For the single-impact scenario, especially under high impact energy levels (10 and 20 J), the 3DOW structure exhibited superior impact-resistance performance as well as damage tolerance, followed by 3DAIW and 2DPW structures. Furthermore, 3DOW achieved superior impact-resistance to the other two structures for the 10-J repeated-impact scenario. The 3DAIW structure, in which debonding or delamination as well as severe resin cracks dominated, achieved superior impact-resistance to multiple impacts with damage repairment.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":" 13","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-velocity impact-resistance of aramid fiber three-dimensional woven textile-reinforced thermoplastic-epoxy composites\",\"authors\":\"Yajun Liu, T. Natsuki, Daisuke Suzuki, Canyi Huang, Lina Cui, Q. Ni\",\"doi\":\"10.1177/08927057231216741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of impact-resistant composite materials for protective applications such as helmet and body armor has attracted considerable attention. In this study, a novel aramid fiber-woven thermoplastic-epoxy composite was developed. Furthermore, three types of woven textiles, namely three-dimensional (3D) orthogonal-woven (3DOW), 3D angle-interlock woven (3DAIW), and two-dimensional plain-woven (2DPW) textiles, were used as reinforcement structures. To study the effect of the woven structure, impact energy, and damage repairment on impact-resistance performance of these composites, low-velocity drop-weight impact tests with various impact scenarios, such as single-impact, repeated-impact, as well as multiple-impact with hot-press damage repairment, were conducted. The results revealed that the woven structure exhibited an obvious effect on the composite impact-resistance performance and failure modes when subjected to specific impact scenarios. For the single-impact scenario, especially under high impact energy levels (10 and 20 J), the 3DOW structure exhibited superior impact-resistance performance as well as damage tolerance, followed by 3DAIW and 2DPW structures. Furthermore, 3DOW achieved superior impact-resistance to the other two structures for the 10-J repeated-impact scenario. The 3DAIW structure, in which debonding or delamination as well as severe resin cracks dominated, achieved superior impact-resistance to multiple impacts with damage repairment.\",\"PeriodicalId\":17446,\"journal\":{\"name\":\"Journal of Thermoplastic Composite Materials\",\"volume\":\" 13\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermoplastic Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/08927057231216741\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermoplastic Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/08927057231216741","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

用于头盔和防弹衣等防护应用的抗冲击复合材料的开发引起了相当大的关注。本文研制了一种新型芳纶纤维织造热塑性环氧复合材料。此外,三种类型的机织织物,即三维(3D)正交编织(3DOW),三维角互锁编织(3DAIW)和二维平纹编织(2DPW)纺织品,被用于加固结构。为了研究编织结构、冲击能量和损伤修复对复合材料抗冲击性能的影响,进行了单次冲击、多次冲击和热压损伤修复等不同冲击工况下的低速落重冲击试验。结果表明,在特定的冲击场景下,编织结构对复合材料的抗冲击性能和破坏模式有明显的影响。在单次冲击情况下,特别是在高冲击能量水平(10和20 J)下,3DOW结构表现出较好的抗冲击性能和损伤容限,其次是3DAIW和2DPW结构。此外,在10-J的重复冲击场景中,3DOW比其他两种结构具有更好的抗冲击性。在3DAIW结构中,脱粘或分层以及严重的树脂裂缝占主导地位,在多次撞击和损伤修复中具有优异的抗冲击性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-velocity impact-resistance of aramid fiber three-dimensional woven textile-reinforced thermoplastic-epoxy composites
The development of impact-resistant composite materials for protective applications such as helmet and body armor has attracted considerable attention. In this study, a novel aramid fiber-woven thermoplastic-epoxy composite was developed. Furthermore, three types of woven textiles, namely three-dimensional (3D) orthogonal-woven (3DOW), 3D angle-interlock woven (3DAIW), and two-dimensional plain-woven (2DPW) textiles, were used as reinforcement structures. To study the effect of the woven structure, impact energy, and damage repairment on impact-resistance performance of these composites, low-velocity drop-weight impact tests with various impact scenarios, such as single-impact, repeated-impact, as well as multiple-impact with hot-press damage repairment, were conducted. The results revealed that the woven structure exhibited an obvious effect on the composite impact-resistance performance and failure modes when subjected to specific impact scenarios. For the single-impact scenario, especially under high impact energy levels (10 and 20 J), the 3DOW structure exhibited superior impact-resistance performance as well as damage tolerance, followed by 3DAIW and 2DPW structures. Furthermore, 3DOW achieved superior impact-resistance to the other two structures for the 10-J repeated-impact scenario. The 3DAIW structure, in which debonding or delamination as well as severe resin cracks dominated, achieved superior impact-resistance to multiple impacts with damage repairment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Thermoplastic Composite Materials
Journal of Thermoplastic Composite Materials 工程技术-材料科学:复合
CiteScore
8.00
自引率
18.20%
发文量
104
审稿时长
5.9 months
期刊介绍: The Journal of Thermoplastic Composite Materials is a fully peer-reviewed international journal that publishes original research and review articles on polymers, nanocomposites, and particulate-, discontinuous-, and continuous-fiber-reinforced materials in the areas of processing, materials science, mechanics, durability, design, non destructive evaluation and manufacturing science. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Investigation of sizing materials for carbon fiber reinforced thermoplastic composites Exploring the strain rate influence on shear yield behavior of acrylonitrile-butadiene-styrene: Experimental and numerical study Thermoelastic analysis of FG-CNTRC cylindrical shells with various boundary conditions and temperature-dependent characteristics using quasi-3D higher-order shear deformation theory Influences of various thermoplastic veil interleaves upon carbon fiber-reinforced composites subjected to low-velocity impact Modelling and fabrication of flexible strain sensor using the 3D printing technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1