{"title":"认知无线电应用中基于迁移学习的室内环境定位辅助调制分类","authors":"K. Tamizhelakkiya, S. Gauni, P. Chandhar","doi":"10.13164/re.2023.0531","DOIUrl":null,"url":null,"abstract":". Modulation classification is a crucial technique to utilize the unconsumed spectrum in Cognitive Radio (CR) and Dynamic Spectrum Access (DSA) systems to meet the required traffic demands for future-generation cellular networks. This paper presents an end-to-end experimental setup as a generic methodology to implement various Transfer Learning (TL) models in an indoor environment. This allows us to learn the features from multiple modulation signals to train and test the model. The performance evaluation of proposed TL models such as Convolutional Neural Network - Random Forest (CNN-RF), and Convolutional Long Short Term Deep Neural Network (CLDNN) - Random Forest (CLDNN-RF) have been thoroughly discussed. The result shows that the proposed TL models yield more than 90% classification accuracy for various modulation types. A proposed framework for location-specific TL model selection based on the maximum classification accuracy has been investigated.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer Learning based Location-Aided Modulation Classification in Indoor Environments for Cognitive Radio Applications\",\"authors\":\"K. Tamizhelakkiya, S. Gauni, P. Chandhar\",\"doi\":\"10.13164/re.2023.0531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Modulation classification is a crucial technique to utilize the unconsumed spectrum in Cognitive Radio (CR) and Dynamic Spectrum Access (DSA) systems to meet the required traffic demands for future-generation cellular networks. This paper presents an end-to-end experimental setup as a generic methodology to implement various Transfer Learning (TL) models in an indoor environment. This allows us to learn the features from multiple modulation signals to train and test the model. The performance evaluation of proposed TL models such as Convolutional Neural Network - Random Forest (CNN-RF), and Convolutional Long Short Term Deep Neural Network (CLDNN) - Random Forest (CLDNN-RF) have been thoroughly discussed. The result shows that the proposed TL models yield more than 90% classification accuracy for various modulation types. A proposed framework for location-specific TL model selection based on the maximum classification accuracy has been investigated.\",\"PeriodicalId\":54514,\"journal\":{\"name\":\"Radioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.13164/re.2023.0531\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2023.0531","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Transfer Learning based Location-Aided Modulation Classification in Indoor Environments for Cognitive Radio Applications
. Modulation classification is a crucial technique to utilize the unconsumed spectrum in Cognitive Radio (CR) and Dynamic Spectrum Access (DSA) systems to meet the required traffic demands for future-generation cellular networks. This paper presents an end-to-end experimental setup as a generic methodology to implement various Transfer Learning (TL) models in an indoor environment. This allows us to learn the features from multiple modulation signals to train and test the model. The performance evaluation of proposed TL models such as Convolutional Neural Network - Random Forest (CNN-RF), and Convolutional Long Short Term Deep Neural Network (CLDNN) - Random Forest (CLDNN-RF) have been thoroughly discussed. The result shows that the proposed TL models yield more than 90% classification accuracy for various modulation types. A proposed framework for location-specific TL model selection based on the maximum classification accuracy has been investigated.
期刊介绍:
Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields.
Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering.
The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.