{"title":"基于 DWT-SVD 的混合自适应图像水印方案","authors":"Sachin Gaur, Navneet Tripathi, Jyoti Pandey","doi":"10.18178/joig.11.4.414-427","DOIUrl":null,"url":null,"abstract":"In the digital age, protecting the ownership and data veracity of digital documents is a major challenge. To address the issues concerning copyright protection and data verification of digital media, digital watermarking has emerged as a solution. In this paper, we aspire to make a modest contribution to this emerging and exciting field by presenting our proposed adaptive hybrid image watermarking approach that combines Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD). Our method involves applying DWT to both the host image and watermark, followed by singular decomposition using SVD on the Low-Low (LL) component of both images. Now modify the singular values of the host image by the singular values of the watermark, and then inverse SVD is applied, followed by inverse DWT, to obtain the watermarked image. After that, the reverse process is applied to obtain the watermark image. Finally, we evaluate our approach’s performance by measuring the Peak Signal-to-Noise Ratio (PSNR) between the original and watermarked image as well as the Normalized Cross-Correlation (NCC) between the original and extracted watermark. Simulation results indicate that the proposed method is rich in terms of robustness, imperceptibility and capacity than the previously presented schemes.","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":" 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid DWT-SVD Based Adaptive Image Watermarking Scheme\",\"authors\":\"Sachin Gaur, Navneet Tripathi, Jyoti Pandey\",\"doi\":\"10.18178/joig.11.4.414-427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the digital age, protecting the ownership and data veracity of digital documents is a major challenge. To address the issues concerning copyright protection and data verification of digital media, digital watermarking has emerged as a solution. In this paper, we aspire to make a modest contribution to this emerging and exciting field by presenting our proposed adaptive hybrid image watermarking approach that combines Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD). Our method involves applying DWT to both the host image and watermark, followed by singular decomposition using SVD on the Low-Low (LL) component of both images. Now modify the singular values of the host image by the singular values of the watermark, and then inverse SVD is applied, followed by inverse DWT, to obtain the watermarked image. After that, the reverse process is applied to obtain the watermark image. Finally, we evaluate our approach’s performance by measuring the Peak Signal-to-Noise Ratio (PSNR) between the original and watermarked image as well as the Normalized Cross-Correlation (NCC) between the original and extracted watermark. Simulation results indicate that the proposed method is rich in terms of robustness, imperceptibility and capacity than the previously presented schemes.\",\"PeriodicalId\":36336,\"journal\":{\"name\":\"中国图象图形学报\",\"volume\":\" 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国图象图形学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.18178/joig.11.4.414-427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国图象图形学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.18178/joig.11.4.414-427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
A Hybrid DWT-SVD Based Adaptive Image Watermarking Scheme
In the digital age, protecting the ownership and data veracity of digital documents is a major challenge. To address the issues concerning copyright protection and data verification of digital media, digital watermarking has emerged as a solution. In this paper, we aspire to make a modest contribution to this emerging and exciting field by presenting our proposed adaptive hybrid image watermarking approach that combines Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD). Our method involves applying DWT to both the host image and watermark, followed by singular decomposition using SVD on the Low-Low (LL) component of both images. Now modify the singular values of the host image by the singular values of the watermark, and then inverse SVD is applied, followed by inverse DWT, to obtain the watermarked image. After that, the reverse process is applied to obtain the watermark image. Finally, we evaluate our approach’s performance by measuring the Peak Signal-to-Noise Ratio (PSNR) between the original and watermarked image as well as the Normalized Cross-Correlation (NCC) between the original and extracted watermark. Simulation results indicate that the proposed method is rich in terms of robustness, imperceptibility and capacity than the previously presented schemes.
中国图象图形学报Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6776
期刊介绍:
Journal of Image and Graphics (ISSN 1006-8961, CN 11-3758/TB, CODEN ZTTXFZ) is an authoritative academic journal supervised by the Chinese Academy of Sciences and co-sponsored by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (ISIAS), the Chinese Society of Image and Graphics (CSIG), and the Beijing Institute of Applied Physics and Computational Mathematics (BIAPM). The journal integrates high-tech theories, technical methods and industrialisation of applied research results in computer image graphics, and mainly publishes innovative and high-level scientific research papers on basic and applied research in image graphics science and its closely related fields. The form of papers includes reviews, technical reports, project progress, academic news, new technology reviews, new product introduction and industrialisation research. The content covers a wide range of fields such as image analysis and recognition, image understanding and computer vision, computer graphics, virtual reality and augmented reality, system simulation, animation, etc., and theme columns are opened according to the research hotspots and cutting-edge topics.
Journal of Image and Graphics reaches a wide range of readers, including scientific and technical personnel, enterprise supervisors, and postgraduates and college students of colleges and universities engaged in the fields of national defence, military, aviation, aerospace, communications, electronics, automotive, agriculture, meteorology, environmental protection, remote sensing, mapping, oil field, construction, transportation, finance, telecommunications, education, medical care, film and television, and art.
Journal of Image and Graphics is included in many important domestic and international scientific literature database systems, including EBSCO database in the United States, JST database in Japan, Scopus database in the Netherlands, China Science and Technology Thesis Statistics and Analysis (Annual Research Report), China Science Citation Database (CSCD), China Academic Journal Network Publishing Database (CAJD), and China Academic Journal Network Publishing Database (CAJD). China Science Citation Database (CSCD), China Academic Journals Network Publishing Database (CAJD), China Academic Journal Abstracts, Chinese Science Abstracts (Series A), China Electronic Science Abstracts, Chinese Core Journals Abstracts, Chinese Academic Journals on CD-ROM, and China Academic Journals Comprehensive Evaluation Database.