M. McMillan, Karen Williams, Kimberly Moore, Samira Daroub, John E. Erickson, Stanley Kostka, Michael Fidanza
{"title":"评估在沙子上诱导疏水性的方法","authors":"M. McMillan, Karen Williams, Kimberly Moore, Samira Daroub, John E. Erickson, Stanley Kostka, Michael Fidanza","doi":"10.21273/hortsci16963-22","DOIUrl":null,"url":null,"abstract":"Methods to evaluate soil water repellency (SWR) require extensive studies on field soils and are subject to the heterogeneity of SWR throughout the soil profile as well as plant/soil interactions. The objectives of this study were to develop a synthetic method to create hydrophobic sand, and to determine if that hydrophobic sand would affect the establishment of bermudagrass (Cynodon dactylon L. Pers. × C. transvaalensis Burtt-Davy, cv. Tifeagle) sprigs. Two techniques were developed to render sand hydrophobic: soap:sand method (hydrophobic sand; HSS) and sand:peat method (hydrophobic sand and read sedge peat; HSP). Both HSS and HSP remained severely hydrophobic at 0 cm depth for only 7 d, and at the 1- to 6-cm depth for 77 continuous days, as determined by water drop penetration time. Bermudagrass establishment, root growth, or shoot growth in two greenhouse experiments with four root zone substrates–HSS, HSP, WSAND (wettable sand), and WSP (wettable sand and reed sedge peat)—were not consistent. In conclusion, both HSS and HSP were shown to be safe and effective methods to synthetically produce hydrophobic sand for potential use in laboratory research, but further evaluation is needed to determine the feasibility of using HSS and HSP for turfgrass growth evaluations.","PeriodicalId":13140,"journal":{"name":"Hortscience","volume":"51 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of a Method to Induce Hydrophobicity on Sand\",\"authors\":\"M. McMillan, Karen Williams, Kimberly Moore, Samira Daroub, John E. Erickson, Stanley Kostka, Michael Fidanza\",\"doi\":\"10.21273/hortsci16963-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methods to evaluate soil water repellency (SWR) require extensive studies on field soils and are subject to the heterogeneity of SWR throughout the soil profile as well as plant/soil interactions. The objectives of this study were to develop a synthetic method to create hydrophobic sand, and to determine if that hydrophobic sand would affect the establishment of bermudagrass (Cynodon dactylon L. Pers. × C. transvaalensis Burtt-Davy, cv. Tifeagle) sprigs. Two techniques were developed to render sand hydrophobic: soap:sand method (hydrophobic sand; HSS) and sand:peat method (hydrophobic sand and read sedge peat; HSP). Both HSS and HSP remained severely hydrophobic at 0 cm depth for only 7 d, and at the 1- to 6-cm depth for 77 continuous days, as determined by water drop penetration time. Bermudagrass establishment, root growth, or shoot growth in two greenhouse experiments with four root zone substrates–HSS, HSP, WSAND (wettable sand), and WSP (wettable sand and reed sedge peat)—were not consistent. In conclusion, both HSS and HSP were shown to be safe and effective methods to synthetically produce hydrophobic sand for potential use in laboratory research, but further evaluation is needed to determine the feasibility of using HSS and HSP for turfgrass growth evaluations.\",\"PeriodicalId\":13140,\"journal\":{\"name\":\"Hortscience\",\"volume\":\"51 2\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hortscience\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.21273/hortsci16963-22\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hortscience","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/hortsci16963-22","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
摘要
评估土壤拒水性(SWR)的方法需要对田间土壤进行广泛的研究,并受到整个土壤剖面中土壤拒水性的异质性以及植物/土壤相互作用的影响。本研究的目的是建立一种合成疏水砂的方法,并确定疏水砂是否会影响百慕大草(Cynodon dactylon L. Pers)的生长。× C. transvaalensis Burtt-Davy, cv。Tifeagle)枝。开发了两种使砂具有疏水性的技术:皂砂法(疏水性砂;HSS)和砂:泥炭法(疏水砂和读莎草泥炭;HSP)。通过水滴渗透时间测定,HSS和HSP在0 cm深度仅持续7 d,在1 ~ 6 cm深度持续77天。在4种根区基质——hss、HSP、WSAND(可湿性砂)和WSP(可湿性砂和芦苇莎草泥炭)的2个温室试验中,百德草的建立、根生长或地上部生长均不一致。综上所述,HSS和HSP都是安全有效的合成疏水砂的方法,具有实验室研究的潜力,但需要进一步评估HSS和HSP用于草坪草生长评价的可行性。
Evaluation of a Method to Induce Hydrophobicity on Sand
Methods to evaluate soil water repellency (SWR) require extensive studies on field soils and are subject to the heterogeneity of SWR throughout the soil profile as well as plant/soil interactions. The objectives of this study were to develop a synthetic method to create hydrophobic sand, and to determine if that hydrophobic sand would affect the establishment of bermudagrass (Cynodon dactylon L. Pers. × C. transvaalensis Burtt-Davy, cv. Tifeagle) sprigs. Two techniques were developed to render sand hydrophobic: soap:sand method (hydrophobic sand; HSS) and sand:peat method (hydrophobic sand and read sedge peat; HSP). Both HSS and HSP remained severely hydrophobic at 0 cm depth for only 7 d, and at the 1- to 6-cm depth for 77 continuous days, as determined by water drop penetration time. Bermudagrass establishment, root growth, or shoot growth in two greenhouse experiments with four root zone substrates–HSS, HSP, WSAND (wettable sand), and WSP (wettable sand and reed sedge peat)—were not consistent. In conclusion, both HSS and HSP were shown to be safe and effective methods to synthetically produce hydrophobic sand for potential use in laboratory research, but further evaluation is needed to determine the feasibility of using HSS and HSP for turfgrass growth evaluations.
期刊介绍:
HortScience publishes horticultural information of interest to a broad array of horticulturists. Its goals are to apprise horticultural scientists and others interested in horticulture of scientific and industry developments and of significant research, education, or extension findings or methods.