{"title":"cnn-lstm 模型与关注机制相结合,用于短期建筑供暖负荷预测","authors":"Kun Lan, Xin Xin, Songlin Fang, Pan Cao","doi":"10.3992/jgb.18.4.37","DOIUrl":null,"url":null,"abstract":"\n Predicting the heating load of a building is critical for efficient system operation and cost reduction. Besides the time series, building load data also includes geographical context. It is challenging for the traditional time series model to represent the load data’s time and spatial relations simultaneously. On the other hand, the dependence relationship between the long-time series is notoriously hard to describe in the conventional paradigm. This paper proposes a CNN-LSTM algorithm based on the attention mechanism, combining CNN-LSTM’s capacity to concurrently capture temporal and spatial features with the ability of the attention mechanism to simulate long-term dependence. In addition, the heating load of a university in Xi ‘an is adopted as a case study. Single CNN, LSTM models, and models based on attention mechanism, were used for comparison. The prediction results showed that the CNNLSTM model was more precise than a single CNN or LSTM model, and the global capture ability of the attention mechanism further increased the accuracy. Compared to the CNN-LSTM model, the AT-CNN-LSTM exhibited a 1.2% improvement in goodness-of-fit R2, a 25.9% drop in RMSE, a 25.4% decrease in CV-RMSE, and a 26.1% decline in MAE. In contrast, the R2 of the AT-CNN-LSTM model improved by 15.8% on average, RMSE reduced by 31.3%, CV-RMSE fell by 31.5%, and MAE decreased by 32.4% on average, compared to the single model. The paper’s findings will provide a basis for selecting a high-precision prediction model for building load forecasting.","PeriodicalId":51753,"journal":{"name":"Journal of Green Building","volume":"24 42","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNN-LSTM MODELS COMBINED WITH ATTENTION MECHANISM FOR SHORT-TERM BUILDING HEATING LOAD PREDICTION\",\"authors\":\"Kun Lan, Xin Xin, Songlin Fang, Pan Cao\",\"doi\":\"10.3992/jgb.18.4.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Predicting the heating load of a building is critical for efficient system operation and cost reduction. Besides the time series, building load data also includes geographical context. It is challenging for the traditional time series model to represent the load data’s time and spatial relations simultaneously. On the other hand, the dependence relationship between the long-time series is notoriously hard to describe in the conventional paradigm. This paper proposes a CNN-LSTM algorithm based on the attention mechanism, combining CNN-LSTM’s capacity to concurrently capture temporal and spatial features with the ability of the attention mechanism to simulate long-term dependence. In addition, the heating load of a university in Xi ‘an is adopted as a case study. Single CNN, LSTM models, and models based on attention mechanism, were used for comparison. The prediction results showed that the CNNLSTM model was more precise than a single CNN or LSTM model, and the global capture ability of the attention mechanism further increased the accuracy. Compared to the CNN-LSTM model, the AT-CNN-LSTM exhibited a 1.2% improvement in goodness-of-fit R2, a 25.9% drop in RMSE, a 25.4% decrease in CV-RMSE, and a 26.1% decline in MAE. In contrast, the R2 of the AT-CNN-LSTM model improved by 15.8% on average, RMSE reduced by 31.3%, CV-RMSE fell by 31.5%, and MAE decreased by 32.4% on average, compared to the single model. The paper’s findings will provide a basis for selecting a high-precision prediction model for building load forecasting.\",\"PeriodicalId\":51753,\"journal\":{\"name\":\"Journal of Green Building\",\"volume\":\"24 42\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Green Building\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3992/jgb.18.4.37\",\"RegionNum\":4,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Green Building","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3992/jgb.18.4.37","RegionNum":4,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
CNN-LSTM MODELS COMBINED WITH ATTENTION MECHANISM FOR SHORT-TERM BUILDING HEATING LOAD PREDICTION
Predicting the heating load of a building is critical for efficient system operation and cost reduction. Besides the time series, building load data also includes geographical context. It is challenging for the traditional time series model to represent the load data’s time and spatial relations simultaneously. On the other hand, the dependence relationship between the long-time series is notoriously hard to describe in the conventional paradigm. This paper proposes a CNN-LSTM algorithm based on the attention mechanism, combining CNN-LSTM’s capacity to concurrently capture temporal and spatial features with the ability of the attention mechanism to simulate long-term dependence. In addition, the heating load of a university in Xi ‘an is adopted as a case study. Single CNN, LSTM models, and models based on attention mechanism, were used for comparison. The prediction results showed that the CNNLSTM model was more precise than a single CNN or LSTM model, and the global capture ability of the attention mechanism further increased the accuracy. Compared to the CNN-LSTM model, the AT-CNN-LSTM exhibited a 1.2% improvement in goodness-of-fit R2, a 25.9% drop in RMSE, a 25.4% decrease in CV-RMSE, and a 26.1% decline in MAE. In contrast, the R2 of the AT-CNN-LSTM model improved by 15.8% on average, RMSE reduced by 31.3%, CV-RMSE fell by 31.5%, and MAE decreased by 32.4% on average, compared to the single model. The paper’s findings will provide a basis for selecting a high-precision prediction model for building load forecasting.
期刊介绍:
The purpose of the Journal of Green Building is to present the very best peer-reviewed research in green building design, construction, engineering, technological innovation, facilities management, building information modeling, and community and urban planning. The Research section of the Journal of Green Building publishes peer-reviewed articles in the fields of engineering, architecture, construction, construction management, building science, facilities management, landscape architecture, interior design, urban and community planning, and all disciplines related to the built environment. In addition, the Journal of Green Building offers the following sections: Industry Corner that offers applied articles of successfully completed sustainable buildings and landscapes; New Directions in Teaching and Research that offers guidance from teachers and researchers on incorporating innovative sustainable learning into the curriculum or the likely directions of future research; and Campus Sustainability that offers articles from programs dedicated to greening the university campus.