{"title":"光催化和电催化应用中的化学还原银纳米粒子","authors":"Da-Qing Tan, Meng-Yao Dong, Yi-jie Xia, Xuan-Ye Wang, Hui-Ge Wei","doi":"10.1680/jemmr.23.00064","DOIUrl":null,"url":null,"abstract":"In virtue of unique physiochemical properties, silver nanoparticles (AgNPs) have attracted enormous research interest for versatile applications. It is critical to study the effect of the microstructure, e.g., the shape and the size of AgNPs on their performance. Herein, AgNPs with varying shapes and sizes were synthesized by varying the manner of the reducing agent NaBH4 added (i.e., multi-step and one-step reduction methods), and then were studied for photocatalytic of dyes and electrocatalytic oxidation of glucose. The results showed that triangular, spherical, or the mixture of triangular/spherical shaped AgNPs were obtained from multi-step reduction method, whereas only spherical shaped AgNPs were yielded from the one-step reduction method. The sizes could be manipulated by changing the concentrations of the reagents or the reaction temperature. The triangular shaped and smaller-sized AgNPs were more effective for photocatalytic of dyes, and the degradation percent of methylene blue was enhanced to 95% for the Ag-TiO2 complex from 50% for pure TiO2. Moreover, the spherical shaped AgNPs with smaller size could effectively detect glucose at a very low concentration of 5 to 10 mM with an excellent glucose tolerance.","PeriodicalId":11537,"journal":{"name":"Emerging Materials Research","volume":"331 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemically reduced silver nanoparticles towards photocatalytic and electrocatalytic applications\",\"authors\":\"Da-Qing Tan, Meng-Yao Dong, Yi-jie Xia, Xuan-Ye Wang, Hui-Ge Wei\",\"doi\":\"10.1680/jemmr.23.00064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In virtue of unique physiochemical properties, silver nanoparticles (AgNPs) have attracted enormous research interest for versatile applications. It is critical to study the effect of the microstructure, e.g., the shape and the size of AgNPs on their performance. Herein, AgNPs with varying shapes and sizes were synthesized by varying the manner of the reducing agent NaBH4 added (i.e., multi-step and one-step reduction methods), and then were studied for photocatalytic of dyes and electrocatalytic oxidation of glucose. The results showed that triangular, spherical, or the mixture of triangular/spherical shaped AgNPs were obtained from multi-step reduction method, whereas only spherical shaped AgNPs were yielded from the one-step reduction method. The sizes could be manipulated by changing the concentrations of the reagents or the reaction temperature. The triangular shaped and smaller-sized AgNPs were more effective for photocatalytic of dyes, and the degradation percent of methylene blue was enhanced to 95% for the Ag-TiO2 complex from 50% for pure TiO2. Moreover, the spherical shaped AgNPs with smaller size could effectively detect glucose at a very low concentration of 5 to 10 mM with an excellent glucose tolerance.\",\"PeriodicalId\":11537,\"journal\":{\"name\":\"Emerging Materials Research\",\"volume\":\"331 2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1680/jemmr.23.00064\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jemmr.23.00064","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Chemically reduced silver nanoparticles towards photocatalytic and electrocatalytic applications
In virtue of unique physiochemical properties, silver nanoparticles (AgNPs) have attracted enormous research interest for versatile applications. It is critical to study the effect of the microstructure, e.g., the shape and the size of AgNPs on their performance. Herein, AgNPs with varying shapes and sizes were synthesized by varying the manner of the reducing agent NaBH4 added (i.e., multi-step and one-step reduction methods), and then were studied for photocatalytic of dyes and electrocatalytic oxidation of glucose. The results showed that triangular, spherical, or the mixture of triangular/spherical shaped AgNPs were obtained from multi-step reduction method, whereas only spherical shaped AgNPs were yielded from the one-step reduction method. The sizes could be manipulated by changing the concentrations of the reagents or the reaction temperature. The triangular shaped and smaller-sized AgNPs were more effective for photocatalytic of dyes, and the degradation percent of methylene blue was enhanced to 95% for the Ag-TiO2 complex from 50% for pure TiO2. Moreover, the spherical shaped AgNPs with smaller size could effectively detect glucose at a very low concentration of 5 to 10 mM with an excellent glucose tolerance.
期刊介绍:
Materials Research is constantly evolving and correlations between process, structure, properties and performance which are application specific require expert understanding at the macro-, micro- and nano-scale. The ability to intelligently manipulate material properties and tailor them for desired applications is of constant interest and challenge within universities, national labs and industry.