用于生物正交连接反应的光活化试剂

IF 8.6 2区 化学 Q1 Chemistry Topics in Current Chemistry Pub Date : 2023-12-13 DOI:10.1007/s41061-023-00447-4
Heyang Zhang, Ming Fang, Qing Lin
{"title":"用于生物正交连接反应的光活化试剂","authors":"Heyang Zhang,&nbsp;Ming Fang,&nbsp;Qing Lin","doi":"10.1007/s41061-023-00447-4","DOIUrl":null,"url":null,"abstract":"<div><p>Light-induced bioorthogonal reactions offer spatiotemporal control over selective biomolecular labeling. This review covers the recent advances in the design of photo-activatable reagents for bioorthogonal conjugation reactions in living systems. These reagents are stable in the absence of light, but transformed into reactive species upon light illumination, which then undergo rapid ligation reactions. The light wavelength has been tuned from ultraviolet to near infrared to enable efficient photo-activation in reactions in deep tissues. The most prominent photo-activatable reagents are presented, including tetrazoles, tetrazines, 9,10-phenanthrenequinone, diarylsydnones, and others. A particular focus is on the strategies for improving reaction kinetics and biocompatibility accomplished through careful molecular engineering. The utilities of these photo-activatable reagents are illustrated through a broad range of biological applications, including in vivo protein labeling, positron emission tomography (PET) imaging, responsive hydrogels, and fluorescence microscopy. The further development and optimization of these biocompatible photo-activatable reagents should lead to new chemical biology strategies for studying biomolecular structure and function in living systems.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photo-activatable Reagents for Bioorthogonal Ligation Reactions\",\"authors\":\"Heyang Zhang,&nbsp;Ming Fang,&nbsp;Qing Lin\",\"doi\":\"10.1007/s41061-023-00447-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Light-induced bioorthogonal reactions offer spatiotemporal control over selective biomolecular labeling. This review covers the recent advances in the design of photo-activatable reagents for bioorthogonal conjugation reactions in living systems. These reagents are stable in the absence of light, but transformed into reactive species upon light illumination, which then undergo rapid ligation reactions. The light wavelength has been tuned from ultraviolet to near infrared to enable efficient photo-activation in reactions in deep tissues. The most prominent photo-activatable reagents are presented, including tetrazoles, tetrazines, 9,10-phenanthrenequinone, diarylsydnones, and others. A particular focus is on the strategies for improving reaction kinetics and biocompatibility accomplished through careful molecular engineering. The utilities of these photo-activatable reagents are illustrated through a broad range of biological applications, including in vivo protein labeling, positron emission tomography (PET) imaging, responsive hydrogels, and fluorescence microscopy. The further development and optimization of these biocompatible photo-activatable reagents should lead to new chemical biology strategies for studying biomolecular structure and function in living systems.</p></div>\",\"PeriodicalId\":802,\"journal\":{\"name\":\"Topics in Current Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Current Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41061-023-00447-4\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-023-00447-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

光诱导的生物正交反应提供了对选择性生物分子标记的时空控制。本文综述了近年来用于生物正交偶联反应的光活化试剂的设计研究进展。这些试剂在没有光的情况下是稳定的,但在光照下转化为反应物质,然后进行快速的结扎反应。光的波长已经从紫外线调到近红外线,以便在深层组织的反应中进行有效的光激活。介绍了最突出的光活化试剂,包括四唑、四嗪、9,10-菲醌、二芳基酮等。一个特别的重点是改善反应动力学和生物相容性的策略,通过仔细的分子工程完成。这些光活化试剂的效用通过广泛的生物应用来说明,包括体内蛋白质标记,正电子发射断层扫描(PET)成像,反应性水凝胶和荧光显微镜。这些生物相容性光活化试剂的进一步开发和优化将为研究生命系统中的生物分子结构和功能提供新的化学生物学策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photo-activatable Reagents for Bioorthogonal Ligation Reactions

Light-induced bioorthogonal reactions offer spatiotemporal control over selective biomolecular labeling. This review covers the recent advances in the design of photo-activatable reagents for bioorthogonal conjugation reactions in living systems. These reagents are stable in the absence of light, but transformed into reactive species upon light illumination, which then undergo rapid ligation reactions. The light wavelength has been tuned from ultraviolet to near infrared to enable efficient photo-activation in reactions in deep tissues. The most prominent photo-activatable reagents are presented, including tetrazoles, tetrazines, 9,10-phenanthrenequinone, diarylsydnones, and others. A particular focus is on the strategies for improving reaction kinetics and biocompatibility accomplished through careful molecular engineering. The utilities of these photo-activatable reagents are illustrated through a broad range of biological applications, including in vivo protein labeling, positron emission tomography (PET) imaging, responsive hydrogels, and fluorescence microscopy. The further development and optimization of these biocompatible photo-activatable reagents should lead to new chemical biology strategies for studying biomolecular structure and function in living systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry 化学-化学综合
CiteScore
11.70
自引率
1.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Topics in Current Chemistry provides in-depth analyses and forward-thinking perspectives on the latest advancements in chemical research. This renowned journal encompasses various domains within chemical science and their intersections with biology, medicine, physics, and materials science. Each collection within the journal aims to offer a comprehensive understanding, accessible to both academic and industrial readers, of emerging research in an area that captivates a broader scientific community. In essence, Topics in Current Chemistry illuminates cutting-edge chemical research, fosters interdisciplinary collaboration, and facilitates knowledge-sharing among diverse scientific audiences.
期刊最新文献
Schiff Base-Based Molybdenum Complexes as Green Catalyst in the Epoxidation Reaction: A Minireview Recent Advances in the Synthesis of Acyclic Nucleosides and Their Therapeutic Applications The Benzoxazole Heterocycle: A Comprehensive Review of the Most Recent Medicinal Chemistry Developments of Antiproliferative, Brain-Penetrant, and Anti-inflammatory Agents Unveiling the Significance of tert-Butoxides in Transition Metal-Free Cross-Coupling Reactions Research Progress of Deep-Red to Near-Infrared Electroluminescent Materials Based on Organic Cyclometallated Platinum(II) Complexes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1