{"title":"用于从放射性洗衣废水中去除钴、锶和铯的六氰铁酸钾镍-聚丙烯腈复合材料","authors":"Ardie Septian, Md Abdullah Al Masud, Won Sik Shin","doi":"10.1002/clen.202300057","DOIUrl":null,"url":null,"abstract":"<p>The applicability of potassium nickel hexacyanoferrate–polyacrylonitrile (KNiFC–PAN) for the sorption of Co<sup>2+</sup>, Sr<sup>2+</sup>, and Cs<sup>+</sup> from radioactive laundry wastewater generated in nuclear power plants was investigated. Competitive sorption of Co<sup>2+</sup>, Sr<sup>2+</sup>, and Cs<sup>+</sup> onto KNiFC–PAN was studied for single, binary, and ternary solutions. The Langmuir, Freundlich, Kargi–Ozmıhci, Koble–Corrigan, and Langmuir–Freundlich models predicted the single-sorption data (<i>R</i><sup>2</sup> ≥ 0.942, sum of squared error ≤ 0.105). The sorption isotherms were nonlinearly favorable (Freundlich coefficient, <i>N<sub>F</sub></i> = 0.288–0.842). According to the Langmuir, Freundlich, Kargi–Ozmıhci, Koble–Corrigan, and Langmuir–Freundlich models, at pH 5 (<i>C</i><sub>0</sub> = 20 mM), KNiFC−PAN exhibited the highest maximum sorption capacity (<i>q</i><sub>mL</sub>) for Cs<sup>+</sup> among the investigated cations, wherein the primary mechanism was physical sorption. The competition between the metal ions in the binary and ternary systems reduced the respective sorption capacities. Binary and ternary sorption models, such as the ideal adsorbed solution theory (IAST) model coupled with Freundlich (IAST–Freundlich), IAST–Langmuir, and IAST–Langmuir–Freundlich models, were fitted to the experimental data; among these, the IAST–Freundlich model was the most accurate for the binary and ternary systems. The presence of sodium 4-n-octylbenzenesulfonate and dodecylbenzene–sulfonic acid sodium salt as anionic surfactants strongly affected the sorption capacity on KNiFC–PAN owing to increased distribution coefficients (<i>K</i><sub>d</sub>) of Cs<sup>+</sup>, Sr<sup>2+</sup>, and Co<sup>2+</sup>. Thus, KNiFC–PAN is promising for removing Cs<sup>+</sup>, Sr<sup>2+</sup>, and Co<sup>2+</sup> from radioactive laundry wastewater.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potassium nickel hexacyanoferrate–polyacrylonitrile composite for removing cobalt, strontium, and cesium from radioactive laundry wastewater\",\"authors\":\"Ardie Septian, Md Abdullah Al Masud, Won Sik Shin\",\"doi\":\"10.1002/clen.202300057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The applicability of potassium nickel hexacyanoferrate–polyacrylonitrile (KNiFC–PAN) for the sorption of Co<sup>2+</sup>, Sr<sup>2+</sup>, and Cs<sup>+</sup> from radioactive laundry wastewater generated in nuclear power plants was investigated. Competitive sorption of Co<sup>2+</sup>, Sr<sup>2+</sup>, and Cs<sup>+</sup> onto KNiFC–PAN was studied for single, binary, and ternary solutions. The Langmuir, Freundlich, Kargi–Ozmıhci, Koble–Corrigan, and Langmuir–Freundlich models predicted the single-sorption data (<i>R</i><sup>2</sup> ≥ 0.942, sum of squared error ≤ 0.105). The sorption isotherms were nonlinearly favorable (Freundlich coefficient, <i>N<sub>F</sub></i> = 0.288–0.842). According to the Langmuir, Freundlich, Kargi–Ozmıhci, Koble–Corrigan, and Langmuir–Freundlich models, at pH 5 (<i>C</i><sub>0</sub> = 20 mM), KNiFC−PAN exhibited the highest maximum sorption capacity (<i>q</i><sub>mL</sub>) for Cs<sup>+</sup> among the investigated cations, wherein the primary mechanism was physical sorption. The competition between the metal ions in the binary and ternary systems reduced the respective sorption capacities. Binary and ternary sorption models, such as the ideal adsorbed solution theory (IAST) model coupled with Freundlich (IAST–Freundlich), IAST–Langmuir, and IAST–Langmuir–Freundlich models, were fitted to the experimental data; among these, the IAST–Freundlich model was the most accurate for the binary and ternary systems. The presence of sodium 4-n-octylbenzenesulfonate and dodecylbenzene–sulfonic acid sodium salt as anionic surfactants strongly affected the sorption capacity on KNiFC–PAN owing to increased distribution coefficients (<i>K</i><sub>d</sub>) of Cs<sup>+</sup>, Sr<sup>2+</sup>, and Co<sup>2+</sup>. Thus, KNiFC–PAN is promising for removing Cs<sup>+</sup>, Sr<sup>2+</sup>, and Co<sup>2+</sup> from radioactive laundry wastewater.</p>\",\"PeriodicalId\":10306,\"journal\":{\"name\":\"Clean-soil Air Water\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clean-soil Air Water\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300057\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300057","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Potassium nickel hexacyanoferrate–polyacrylonitrile composite for removing cobalt, strontium, and cesium from radioactive laundry wastewater
The applicability of potassium nickel hexacyanoferrate–polyacrylonitrile (KNiFC–PAN) for the sorption of Co2+, Sr2+, and Cs+ from radioactive laundry wastewater generated in nuclear power plants was investigated. Competitive sorption of Co2+, Sr2+, and Cs+ onto KNiFC–PAN was studied for single, binary, and ternary solutions. The Langmuir, Freundlich, Kargi–Ozmıhci, Koble–Corrigan, and Langmuir–Freundlich models predicted the single-sorption data (R2 ≥ 0.942, sum of squared error ≤ 0.105). The sorption isotherms were nonlinearly favorable (Freundlich coefficient, NF = 0.288–0.842). According to the Langmuir, Freundlich, Kargi–Ozmıhci, Koble–Corrigan, and Langmuir–Freundlich models, at pH 5 (C0 = 20 mM), KNiFC−PAN exhibited the highest maximum sorption capacity (qmL) for Cs+ among the investigated cations, wherein the primary mechanism was physical sorption. The competition between the metal ions in the binary and ternary systems reduced the respective sorption capacities. Binary and ternary sorption models, such as the ideal adsorbed solution theory (IAST) model coupled with Freundlich (IAST–Freundlich), IAST–Langmuir, and IAST–Langmuir–Freundlich models, were fitted to the experimental data; among these, the IAST–Freundlich model was the most accurate for the binary and ternary systems. The presence of sodium 4-n-octylbenzenesulfonate and dodecylbenzene–sulfonic acid sodium salt as anionic surfactants strongly affected the sorption capacity on KNiFC–PAN owing to increased distribution coefficients (Kd) of Cs+, Sr2+, and Co2+. Thus, KNiFC–PAN is promising for removing Cs+, Sr2+, and Co2+ from radioactive laundry wastewater.
期刊介绍:
CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications.
Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.