{"title":"基于 ML 的神经肌肉失调识别技术(使用肌电信号)在情感健康领域的应用","authors":"Abdelouahad Achmamad, Mohamed Elfezazi, Abdellah Chehri, Imran Ahmed, Atman Jbari, Rachid Saadane","doi":"10.1145/3637213","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract:</b> The electromyogram (EMG), also known as an EMG, is used to assess nerve impulses in motor nerves, sensory nerves, and muscles. EMS is a versatile tool used in various biomedical applications. It is commonly employed to determine physical health, but it also finds utility in evaluating emotional well-being, such as through facial electromyography. Classification of EMG signals has attracted the interest of scientists since it is crucial for identifying neuromuscular disorders (NMDs). Recent advances in the miniaturization of biomedical sensors enable the development of medical monitoring systems. This paper presents a portable and scalable architecture for machine learning modules designed for medical diagnostics. In particular, we provide a hybrid classification model for NMDs. The proposed method combines two supervised machine learning classifiers with the discrete wavelet transform (DWT). During the online testing phase, the class label of an EMG signal is predicted using the classifiers’ optimal models, which can be identified at this stage. The simulation results demonstrate that both classifiers have an accuracy of over 98%. Finally, the proposed method was implemented using an embedded CompactRIO-9035 real-time controller.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"7 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ML-Based Identification of Neuromuscular Disorder Using EMG Signals for Emotional Health Application\",\"authors\":\"Abdelouahad Achmamad, Mohamed Elfezazi, Abdellah Chehri, Imran Ahmed, Atman Jbari, Rachid Saadane\",\"doi\":\"10.1145/3637213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract:</b> The electromyogram (EMG), also known as an EMG, is used to assess nerve impulses in motor nerves, sensory nerves, and muscles. EMS is a versatile tool used in various biomedical applications. It is commonly employed to determine physical health, but it also finds utility in evaluating emotional well-being, such as through facial electromyography. Classification of EMG signals has attracted the interest of scientists since it is crucial for identifying neuromuscular disorders (NMDs). Recent advances in the miniaturization of biomedical sensors enable the development of medical monitoring systems. This paper presents a portable and scalable architecture for machine learning modules designed for medical diagnostics. In particular, we provide a hybrid classification model for NMDs. The proposed method combines two supervised machine learning classifiers with the discrete wavelet transform (DWT). During the online testing phase, the class label of an EMG signal is predicted using the classifiers’ optimal models, which can be identified at this stage. The simulation results demonstrate that both classifiers have an accuracy of over 98%. Finally, the proposed method was implemented using an embedded CompactRIO-9035 real-time controller.</p>\",\"PeriodicalId\":50911,\"journal\":{\"name\":\"ACM Transactions on Internet Technology\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3637213\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3637213","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
ML-Based Identification of Neuromuscular Disorder Using EMG Signals for Emotional Health Application
Abstract: The electromyogram (EMG), also known as an EMG, is used to assess nerve impulses in motor nerves, sensory nerves, and muscles. EMS is a versatile tool used in various biomedical applications. It is commonly employed to determine physical health, but it also finds utility in evaluating emotional well-being, such as through facial electromyography. Classification of EMG signals has attracted the interest of scientists since it is crucial for identifying neuromuscular disorders (NMDs). Recent advances in the miniaturization of biomedical sensors enable the development of medical monitoring systems. This paper presents a portable and scalable architecture for machine learning modules designed for medical diagnostics. In particular, we provide a hybrid classification model for NMDs. The proposed method combines two supervised machine learning classifiers with the discrete wavelet transform (DWT). During the online testing phase, the class label of an EMG signal is predicted using the classifiers’ optimal models, which can be identified at this stage. The simulation results demonstrate that both classifiers have an accuracy of over 98%. Finally, the proposed method was implemented using an embedded CompactRIO-9035 real-time controller.
期刊介绍:
ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.