{"title":"有创和无创冠状动脉造影中的机器学习","authors":"Ozan Unlu, Akl C. Fahed","doi":"10.1007/s11883-023-01178-z","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose of Review</h3><p>The objective of this review is to shed light on the transformative potential of machine learning (ML) in coronary angiography. We aim to understand existing developments in using ML for coronary angiography and discuss broader implications for the future of coronary angiography and cardiovascular medicine.</p><h3 data-test=\"abstract-sub-heading\">Recent Findings</h3><p>The developments in invasive and noninvasive imaging have revolutionized diagnosis and treatment of coronary artery disease (CAD). However, CAD remains underdiagnosed and undertreated. ML has emerged as a powerful tool to further improve image analysis, hemodynamic assessment, lesion detection, and predictive modeling. These advancements have enabled more accurate identification of CAD, streamlined workflows, reduced the need for invasive diagnostic procedures, and improved the diagnostic value of invasive procedures when they are needed. Further integration of ML with coronary angiography will advance the prevention, diagnosis, and treatment of CAD.</p><h3 data-test=\"abstract-sub-heading\">Summary</h3><p>The integration of ML with coronary angiography is ushering in a new era in cardiovascular medicine. We highlight five use cases to leverage ML in coronary angiography: (1) improvement of quality and efficacy, (2) characterization of plaque, (3) hemodynamic assessment, (4) prediction of future outcomes, and (5) diagnosis of non-atherosclerotic coronary disease.</p>","PeriodicalId":10875,"journal":{"name":"Current Atherosclerosis Reports","volume":"3 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning in Invasive and Noninvasive Coronary Angiography\",\"authors\":\"Ozan Unlu, Akl C. Fahed\",\"doi\":\"10.1007/s11883-023-01178-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose of Review</h3><p>The objective of this review is to shed light on the transformative potential of machine learning (ML) in coronary angiography. We aim to understand existing developments in using ML for coronary angiography and discuss broader implications for the future of coronary angiography and cardiovascular medicine.</p><h3 data-test=\\\"abstract-sub-heading\\\">Recent Findings</h3><p>The developments in invasive and noninvasive imaging have revolutionized diagnosis and treatment of coronary artery disease (CAD). However, CAD remains underdiagnosed and undertreated. ML has emerged as a powerful tool to further improve image analysis, hemodynamic assessment, lesion detection, and predictive modeling. These advancements have enabled more accurate identification of CAD, streamlined workflows, reduced the need for invasive diagnostic procedures, and improved the diagnostic value of invasive procedures when they are needed. Further integration of ML with coronary angiography will advance the prevention, diagnosis, and treatment of CAD.</p><h3 data-test=\\\"abstract-sub-heading\\\">Summary</h3><p>The integration of ML with coronary angiography is ushering in a new era in cardiovascular medicine. We highlight five use cases to leverage ML in coronary angiography: (1) improvement of quality and efficacy, (2) characterization of plaque, (3) hemodynamic assessment, (4) prediction of future outcomes, and (5) diagnosis of non-atherosclerotic coronary disease.</p>\",\"PeriodicalId\":10875,\"journal\":{\"name\":\"Current Atherosclerosis Reports\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Atherosclerosis Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11883-023-01178-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Atherosclerosis Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11883-023-01178-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
Machine Learning in Invasive and Noninvasive Coronary Angiography
Purpose of Review
The objective of this review is to shed light on the transformative potential of machine learning (ML) in coronary angiography. We aim to understand existing developments in using ML for coronary angiography and discuss broader implications for the future of coronary angiography and cardiovascular medicine.
Recent Findings
The developments in invasive and noninvasive imaging have revolutionized diagnosis and treatment of coronary artery disease (CAD). However, CAD remains underdiagnosed and undertreated. ML has emerged as a powerful tool to further improve image analysis, hemodynamic assessment, lesion detection, and predictive modeling. These advancements have enabled more accurate identification of CAD, streamlined workflows, reduced the need for invasive diagnostic procedures, and improved the diagnostic value of invasive procedures when they are needed. Further integration of ML with coronary angiography will advance the prevention, diagnosis, and treatment of CAD.
Summary
The integration of ML with coronary angiography is ushering in a new era in cardiovascular medicine. We highlight five use cases to leverage ML in coronary angiography: (1) improvement of quality and efficacy, (2) characterization of plaque, (3) hemodynamic assessment, (4) prediction of future outcomes, and (5) diagnosis of non-atherosclerotic coronary disease.
期刊介绍:
The aim of this journal is to systematically provide expert views on current basic science and clinical advances in the field of atherosclerosis and highlight the most important developments likely to transform the field of cardiovascular prevention, diagnosis, and treatment.
We accomplish this aim by appointing major authorities to serve as Section Editors who select leading experts from around the world to provide definitive reviews on key topics and papers published in the past year. We also provide supplementary reviews and commentaries from well-known figures in the field. An Editorial Board of internationally diverse members suggests topics of special interest to their country/region and ensures that topics are current and include emerging research.