Guangying Fu , Qiaolin Lang , Xiaolong Liu , Haonuan Zhao , Yiqing Sun , Lei Zhao , Ahmed Omran , Peng Lu , Xiaobo Yang , Bing Yu , Valentin Valtchev
{"title":"在酸性介质中结晶的锗硅酸盐沸石类似物药皂石","authors":"Guangying Fu , Qiaolin Lang , Xiaolong Liu , Haonuan Zhao , Yiqing Sun , Lei Zhao , Ahmed Omran , Peng Lu , Xiaobo Yang , Bing Yu , Valentin Valtchev","doi":"10.1016/j.greenca.2023.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>Zeolites are typically synthesized in alkaline or fluoride-containing near-neutral media. Sophisticated organic structure-directing agents have been investigated for such systems with the aim of discovering materials with unprecedented structures and properties for novel technical applications. In contrast, zeolite crystallization in strongly acidic media has yet to be explored. This study demonstrates that a zeolitic silicate phase crystallizes from acidic gels using trimethylamine as an organic additive with the composition 1 SiO<sub>2</sub>:0.3 TMA:0.3 HCl: 0.15 HF:55 H<sub>2</sub>O:(0.1–0.4) GeO<sub>2</sub>. This phase has an interrupted four-connected framework analog to the octahedron/tetrahedron-mixed framework of the mineral family pharmacosiderite. In comparison to the pharmacosiderite-type HK<sub>3</sub>(Ge<sub>7</sub>O<sub>16</sub>)(H<sub>2</sub>O)<sub>4</sub>, the four GeO<sub>6</sub>-octahedra forming the central [HGe<sub>4</sub>O<sub>4</sub>O<sub>12</sub>]-cluster are replaced by four SiO<sub>4</sub>-tetrahedra in a [Si<sub>4</sub>O<sub>6</sub>(OH)<sub>2.89</sub>]-unit in the new phase. However, the structure is distorted and may contain connectivity and point defects; thus, healing by the occasional incorporation of GeO<sub>6</sub>-units is necessary. The refined unit cell has a cubic symmetry, space group P-43m (#215), with a = 7.7005(1) Å. Acidic-medium synthesis is a useful way to find new zeolites that move in a fundamentally different direction from sophisticated organic structure-directing agents.</p></div>","PeriodicalId":100595,"journal":{"name":"Green Carbon","volume":"1 2","pages":"Pages 185-192"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950155523000289/pdfft?md5=85fcb055829c36726fee69c4fa06930e&pid=1-s2.0-S2950155523000289-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Zeolitic germanosilicate analogue to pharmacosiderite crystallized in an acidic medium\",\"authors\":\"Guangying Fu , Qiaolin Lang , Xiaolong Liu , Haonuan Zhao , Yiqing Sun , Lei Zhao , Ahmed Omran , Peng Lu , Xiaobo Yang , Bing Yu , Valentin Valtchev\",\"doi\":\"10.1016/j.greenca.2023.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zeolites are typically synthesized in alkaline or fluoride-containing near-neutral media. Sophisticated organic structure-directing agents have been investigated for such systems with the aim of discovering materials with unprecedented structures and properties for novel technical applications. In contrast, zeolite crystallization in strongly acidic media has yet to be explored. This study demonstrates that a zeolitic silicate phase crystallizes from acidic gels using trimethylamine as an organic additive with the composition 1 SiO<sub>2</sub>:0.3 TMA:0.3 HCl: 0.15 HF:55 H<sub>2</sub>O:(0.1–0.4) GeO<sub>2</sub>. This phase has an interrupted four-connected framework analog to the octahedron/tetrahedron-mixed framework of the mineral family pharmacosiderite. In comparison to the pharmacosiderite-type HK<sub>3</sub>(Ge<sub>7</sub>O<sub>16</sub>)(H<sub>2</sub>O)<sub>4</sub>, the four GeO<sub>6</sub>-octahedra forming the central [HGe<sub>4</sub>O<sub>4</sub>O<sub>12</sub>]-cluster are replaced by four SiO<sub>4</sub>-tetrahedra in a [Si<sub>4</sub>O<sub>6</sub>(OH)<sub>2.89</sub>]-unit in the new phase. However, the structure is distorted and may contain connectivity and point defects; thus, healing by the occasional incorporation of GeO<sub>6</sub>-units is necessary. The refined unit cell has a cubic symmetry, space group P-43m (#215), with a = 7.7005(1) Å. Acidic-medium synthesis is a useful way to find new zeolites that move in a fundamentally different direction from sophisticated organic structure-directing agents.</p></div>\",\"PeriodicalId\":100595,\"journal\":{\"name\":\"Green Carbon\",\"volume\":\"1 2\",\"pages\":\"Pages 185-192\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2950155523000289/pdfft?md5=85fcb055829c36726fee69c4fa06930e&pid=1-s2.0-S2950155523000289-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Carbon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950155523000289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Carbon","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950155523000289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zeolitic germanosilicate analogue to pharmacosiderite crystallized in an acidic medium
Zeolites are typically synthesized in alkaline or fluoride-containing near-neutral media. Sophisticated organic structure-directing agents have been investigated for such systems with the aim of discovering materials with unprecedented structures and properties for novel technical applications. In contrast, zeolite crystallization in strongly acidic media has yet to be explored. This study demonstrates that a zeolitic silicate phase crystallizes from acidic gels using trimethylamine as an organic additive with the composition 1 SiO2:0.3 TMA:0.3 HCl: 0.15 HF:55 H2O:(0.1–0.4) GeO2. This phase has an interrupted four-connected framework analog to the octahedron/tetrahedron-mixed framework of the mineral family pharmacosiderite. In comparison to the pharmacosiderite-type HK3(Ge7O16)(H2O)4, the four GeO6-octahedra forming the central [HGe4O4O12]-cluster are replaced by four SiO4-tetrahedra in a [Si4O6(OH)2.89]-unit in the new phase. However, the structure is distorted and may contain connectivity and point defects; thus, healing by the occasional incorporation of GeO6-units is necessary. The refined unit cell has a cubic symmetry, space group P-43m (#215), with a = 7.7005(1) Å. Acidic-medium synthesis is a useful way to find new zeolites that move in a fundamentally different direction from sophisticated organic structure-directing agents.