{"title":"将废钢板再制造成角钢网的可行性评估","authors":"Ziyad Tariq Abdullah","doi":"10.1049/cim2.12089","DOIUrl":null,"url":null,"abstract":"<p>As a better alternative to the energy-intensive process of recycling waste sheet steel (WSS) from the exterior components of end-of-life vehicles to produce new steel, the feasibility of remanufacturing WSS into angle mesh steel (AMS) for construction applications is evaluated. A remanufacturing unit with a capacity of 1278 m<sup>2</sup>/day of WSS (30,000 vehicle/year) was evaluated using a triple-bottom-line sustainability analysis of the technological, economic, and environmental feasibilities by hybrid defuzzification–curve-fitting, solid-waste recoverability management, and weighting methods. Based on the remanufacturing productivity, an economic feasibility index was calculated considering the sales potential and profit, while the energy and CO<sub>2</sub> emission savings were used to evaluate the environmental feasibility. The technical feasibility considered machine parameters and topological properties of the WSS. The Volkswagen Passat has the best remanufacturability of 200 analysed vehicle models. Remanufacturability indexes of 0.61 and 0.86 were calculated, giving remanufacturing efficiencies of 58%–82%. All feasibility indexes exceed literature thresholds, indicating that the proposed remanufacturing process is a sustainable business strategy and contributes to the United Nations Sustainability Goals of climate action; responsible consumption and production; no poverty; and industry, innovation, and infrastructure.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"5 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12089","citationCount":"0","resultStr":"{\"title\":\"Feasibility assessment of remanufacturing waste sheet steel into angle mesh steel\",\"authors\":\"Ziyad Tariq Abdullah\",\"doi\":\"10.1049/cim2.12089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a better alternative to the energy-intensive process of recycling waste sheet steel (WSS) from the exterior components of end-of-life vehicles to produce new steel, the feasibility of remanufacturing WSS into angle mesh steel (AMS) for construction applications is evaluated. A remanufacturing unit with a capacity of 1278 m<sup>2</sup>/day of WSS (30,000 vehicle/year) was evaluated using a triple-bottom-line sustainability analysis of the technological, economic, and environmental feasibilities by hybrid defuzzification–curve-fitting, solid-waste recoverability management, and weighting methods. Based on the remanufacturing productivity, an economic feasibility index was calculated considering the sales potential and profit, while the energy and CO<sub>2</sub> emission savings were used to evaluate the environmental feasibility. The technical feasibility considered machine parameters and topological properties of the WSS. The Volkswagen Passat has the best remanufacturability of 200 analysed vehicle models. Remanufacturability indexes of 0.61 and 0.86 were calculated, giving remanufacturing efficiencies of 58%–82%. All feasibility indexes exceed literature thresholds, indicating that the proposed remanufacturing process is a sustainable business strategy and contributes to the United Nations Sustainability Goals of climate action; responsible consumption and production; no poverty; and industry, innovation, and infrastructure.</p>\",\"PeriodicalId\":33286,\"journal\":{\"name\":\"IET Collaborative Intelligent Manufacturing\",\"volume\":\"5 4\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12089\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Collaborative Intelligent Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Feasibility assessment of remanufacturing waste sheet steel into angle mesh steel
As a better alternative to the energy-intensive process of recycling waste sheet steel (WSS) from the exterior components of end-of-life vehicles to produce new steel, the feasibility of remanufacturing WSS into angle mesh steel (AMS) for construction applications is evaluated. A remanufacturing unit with a capacity of 1278 m2/day of WSS (30,000 vehicle/year) was evaluated using a triple-bottom-line sustainability analysis of the technological, economic, and environmental feasibilities by hybrid defuzzification–curve-fitting, solid-waste recoverability management, and weighting methods. Based on the remanufacturing productivity, an economic feasibility index was calculated considering the sales potential and profit, while the energy and CO2 emission savings were used to evaluate the environmental feasibility. The technical feasibility considered machine parameters and topological properties of the WSS. The Volkswagen Passat has the best remanufacturability of 200 analysed vehicle models. Remanufacturability indexes of 0.61 and 0.86 were calculated, giving remanufacturing efficiencies of 58%–82%. All feasibility indexes exceed literature thresholds, indicating that the proposed remanufacturing process is a sustainable business strategy and contributes to the United Nations Sustainability Goals of climate action; responsible consumption and production; no poverty; and industry, innovation, and infrastructure.
期刊介绍:
IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly.
The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).