比较基因组学揭示半翅目昆虫食性转变的进化驱动因素

IF 1.6 3区 农林科学 Q2 ENTOMOLOGY Bulletin of Entomological Research Pub Date : 2023-12-15 DOI:10.1017/s0007485323000597
Guangyao Wu, Chunyan Wu, Youssef Dewer, Peiyao Li, Baojun Hao, Liansheng Zang, Fengqi Li
{"title":"比较基因组学揭示半翅目昆虫食性转变的进化驱动因素","authors":"Guangyao Wu, Chunyan Wu, Youssef Dewer, Peiyao Li, Baojun Hao, Liansheng Zang, Fengqi Li","doi":"10.1017/s0007485323000597","DOIUrl":null,"url":null,"abstract":"Hemiptera insects exhibit a close relationship to plants and demonstrate a diverse range of dietary preferences, encompassing phytophagy as the predominant feeding habit while a minority engages in carnivorous or haematophagous behaviour. To counteract the challenges posed by phytophagous insects, plants have developed an array of toxic compounds, causing significant evolutionary selection pressure on these insects. In this study, we employed a comparative genomics approach to analyse the expansion and contraction of gene families specific to phytophagous insect lineages, along with their adaptive evolutionary traits, utilising representative species from the Hemiptera order. Our investigation revealed substantial expansions of gene families within the phytophagous lineages, especially in the Pentatomomorpha branch represented by <jats:italic>Oncopeltus fasciatus</jats:italic> and <jats:italic>Riptortus pedestris</jats:italic>. Notably, these expansions of gene families encoding enzymes are potentially involved in hemipteran-plant interactions. Moreover, the adaptive evolutionary analysis of these lineages revealed a higher prevalence of adaptively evolved genes in the Pentatomomorpha branch. The observed branch-specific gene expansions and adaptive evolution likely contribute significantly to the diversification of species within Hemiptera. These results help enhance our understanding of the genomic characteristics of the evolution of different feeding habits in hemipteran insects.","PeriodicalId":9370,"journal":{"name":"Bulletin of Entomological Research","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative genomics reveals evolutionary drivers of the dietary shift in Hemiptera\",\"authors\":\"Guangyao Wu, Chunyan Wu, Youssef Dewer, Peiyao Li, Baojun Hao, Liansheng Zang, Fengqi Li\",\"doi\":\"10.1017/s0007485323000597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hemiptera insects exhibit a close relationship to plants and demonstrate a diverse range of dietary preferences, encompassing phytophagy as the predominant feeding habit while a minority engages in carnivorous or haematophagous behaviour. To counteract the challenges posed by phytophagous insects, plants have developed an array of toxic compounds, causing significant evolutionary selection pressure on these insects. In this study, we employed a comparative genomics approach to analyse the expansion and contraction of gene families specific to phytophagous insect lineages, along with their adaptive evolutionary traits, utilising representative species from the Hemiptera order. Our investigation revealed substantial expansions of gene families within the phytophagous lineages, especially in the Pentatomomorpha branch represented by <jats:italic>Oncopeltus fasciatus</jats:italic> and <jats:italic>Riptortus pedestris</jats:italic>. Notably, these expansions of gene families encoding enzymes are potentially involved in hemipteran-plant interactions. Moreover, the adaptive evolutionary analysis of these lineages revealed a higher prevalence of adaptively evolved genes in the Pentatomomorpha branch. The observed branch-specific gene expansions and adaptive evolution likely contribute significantly to the diversification of species within Hemiptera. These results help enhance our understanding of the genomic characteristics of the evolution of different feeding habits in hemipteran insects.\",\"PeriodicalId\":9370,\"journal\":{\"name\":\"Bulletin of Entomological Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Entomological Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1017/s0007485323000597\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Entomological Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/s0007485323000597","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

半翅目昆虫与植物关系密切,表现出多种多样的食性偏好,其中以植物食性为主,少数昆虫则有肉食或血食行为。为了应对植食性昆虫带来的挑战,植物开发了一系列有毒化合物,对这些昆虫造成了巨大的进化选择压力。在这项研究中,我们采用比较基因组学方法,利用半翅目的代表性物种,分析了植食性昆虫品系特有基因家族的扩张和收缩及其适应性进化特征。我们的研究揭示了植食性昆虫谱系中基因家族的大幅扩展,尤其是在以Oncopeltus fasciatus和Riptortus pedestris为代表的五蠹昆虫分支中。值得注意的是,这些编码酶的基因家族的扩展可能参与了半翅目昆虫与植物之间的相互作用。此外,对这些种系进行的适应性进化分析表明,适应性进化基因在Pentatomorpha分支中更为普遍。观察到的分支特异性基因扩增和适应性进化很可能对半翅目物种的多样化做出了重要贡献。这些结果有助于加深我们对半翅目昆虫不同食性进化的基因组特征的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative genomics reveals evolutionary drivers of the dietary shift in Hemiptera
Hemiptera insects exhibit a close relationship to plants and demonstrate a diverse range of dietary preferences, encompassing phytophagy as the predominant feeding habit while a minority engages in carnivorous or haematophagous behaviour. To counteract the challenges posed by phytophagous insects, plants have developed an array of toxic compounds, causing significant evolutionary selection pressure on these insects. In this study, we employed a comparative genomics approach to analyse the expansion and contraction of gene families specific to phytophagous insect lineages, along with their adaptive evolutionary traits, utilising representative species from the Hemiptera order. Our investigation revealed substantial expansions of gene families within the phytophagous lineages, especially in the Pentatomomorpha branch represented by Oncopeltus fasciatus and Riptortus pedestris. Notably, these expansions of gene families encoding enzymes are potentially involved in hemipteran-plant interactions. Moreover, the adaptive evolutionary analysis of these lineages revealed a higher prevalence of adaptively evolved genes in the Pentatomomorpha branch. The observed branch-specific gene expansions and adaptive evolution likely contribute significantly to the diversification of species within Hemiptera. These results help enhance our understanding of the genomic characteristics of the evolution of different feeding habits in hemipteran insects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
160
审稿时长
6-12 weeks
期刊介绍: Established in 1910, the internationally recognised Bulletin of Entomological Research aims to further global knowledge of entomology through the generalisation of research findings rather than providing more entomological exceptions. The Bulletin publishes high quality and original research papers, ''critiques'' and review articles concerning insects or other arthropods of economic importance in agriculture, forestry, stored products, biological control, medicine, animal health and natural resource management. The scope of papers addresses the biology, ecology, behaviour, physiology and systematics of individuals and populations, with a particular emphasis upon the major current and emerging pests of agriculture, horticulture and forestry, and vectors of human and animal diseases. This includes the interactions between species (plants, hosts for parasites, natural enemies and whole communities), novel methodological developments, including molecular biology, in an applied context. The Bulletin does not publish the results of pesticide testing or traditional taxonomic revisions.
期刊最新文献
Adaptation to different temperatures results in wing size divergence of the invading species Drosophila nasuta (Diptera: Drosophilidae) in Brazil. Evidence of circulating recombinants between deformed wing virus and Varroa destructor virus-1 in honey bee colonies in Türkiye. Transcriptomic analysis of the gonads of Locusta migratoria (Orthoptera: Acrididae) following infection with Paranosema locustae. Making sense of chromosome polymorphisms in two leptysmine grasshoppers. Reproductive response of the predator Tenuisvalvae notata (Mulsant) (Coleoptera: Coccinellidae) to temperatures outside their ideal thermal range.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1