有限差分频域法自适应系数的简化计算方法

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Applied Geophysics Pub Date : 2023-12-05 DOI:10.1007/s11770-023-1045-8
Wen-Hao Xu, Jing Ba, José Maria Carcione, Zhi-Fang Yang, Xin-Fei Yan
{"title":"有限差分频域法自适应系数的简化计算方法","authors":"Wen-Hao Xu, Jing Ba, José Maria Carcione, Zhi-Fang Yang, Xin-Fei Yan","doi":"10.1007/s11770-023-1045-8","DOIUrl":null,"url":null,"abstract":"<p>The finite-difference frequency domain (FDFD) method is widely applied for simulating seismic wavefields, and a key to achieving successful FDFD simulation is to construct FDFD coefficients that can effectively suppress numerical dispersion. Among the existing FDFD coefficients for seismic wavefield simulation, adaptive FDFD coefficients that vary with the number of wavelengths per grid can suppress numerical dispersion to the maximum extent. The current methods for calculating adaptive FDFD coefficients involve numerical integration, conjugate gradient (CG) optimization, sequential initial value selection, and smooth regularization, which are difficult to implement and inefficient in calculations. To simplify the calculation of adaptive FDFD coefficients and improve the corresponding computational efficiency, this paper proposes a new method for calculating adaptive FDFD coefficients. First, plane-wave solutions with different discrete propagation angles are substituted in the FDFD scheme, and the corresponding least-squares problem is constructed. As this problem is ill-conditioned and obtaining smooth adaptive FDFD coefficients by the conventional solving method based on normal equations is difficult, this paper proposes solving the least-squares problem by solving the corresponding overdetermined linear system of equations through QR matrix decomposition. Compared with the existing methods for calculating adaptive FDFD coefficients based on numerical integration, CG optimization, and sequential initial value selection, the proposed method allows for a simplified computational process and considerably higher computational efficiency. Numerical wavefield simulation results show that the adaptive-coefficient FDFD method based on QR matrix decomposition can achieve the same accuracy as those based on numerical integration, CG optimization, and sequential initial value selection while requiring less computation time.</p>","PeriodicalId":55500,"journal":{"name":"Applied Geophysics","volume":"10 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simplified calculation for adaptive coefficients of finite-difference frequency-domain method\",\"authors\":\"Wen-Hao Xu, Jing Ba, José Maria Carcione, Zhi-Fang Yang, Xin-Fei Yan\",\"doi\":\"10.1007/s11770-023-1045-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The finite-difference frequency domain (FDFD) method is widely applied for simulating seismic wavefields, and a key to achieving successful FDFD simulation is to construct FDFD coefficients that can effectively suppress numerical dispersion. Among the existing FDFD coefficients for seismic wavefield simulation, adaptive FDFD coefficients that vary with the number of wavelengths per grid can suppress numerical dispersion to the maximum extent. The current methods for calculating adaptive FDFD coefficients involve numerical integration, conjugate gradient (CG) optimization, sequential initial value selection, and smooth regularization, which are difficult to implement and inefficient in calculations. To simplify the calculation of adaptive FDFD coefficients and improve the corresponding computational efficiency, this paper proposes a new method for calculating adaptive FDFD coefficients. First, plane-wave solutions with different discrete propagation angles are substituted in the FDFD scheme, and the corresponding least-squares problem is constructed. As this problem is ill-conditioned and obtaining smooth adaptive FDFD coefficients by the conventional solving method based on normal equations is difficult, this paper proposes solving the least-squares problem by solving the corresponding overdetermined linear system of equations through QR matrix decomposition. Compared with the existing methods for calculating adaptive FDFD coefficients based on numerical integration, CG optimization, and sequential initial value selection, the proposed method allows for a simplified computational process and considerably higher computational efficiency. Numerical wavefield simulation results show that the adaptive-coefficient FDFD method based on QR matrix decomposition can achieve the same accuracy as those based on numerical integration, CG optimization, and sequential initial value selection while requiring less computation time.</p>\",\"PeriodicalId\":55500,\"journal\":{\"name\":\"Applied Geophysics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11770-023-1045-8\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11770-023-1045-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

有限差分频域(FDFD)方法被广泛应用于地震波场模拟,而成功实现 FDFD 模拟的关键在于构建能够有效抑制数值色散的 FDFD 系数。在现有的地震波场模拟 FDFD 系数中,随网格波长数变化的自适应 FDFD 系数能最大程度地抑制数值色散。目前计算自适应 FDFD 系数的方法包括数值积分、共轭梯度(CG)优化、序列初值选择和平滑正则化,这些方法难以实现且计算效率低。为了简化自适应 FDFD 系数的计算并提高相应的计算效率,本文提出了一种新的自适应 FDFD 系数计算方法。首先,在 FDFD 方案中代入不同离散传播角的平面波解,并构建相应的最小二乘问题。由于该问题条件不完善,用传统的基于正则方程的求解方法很难得到平滑的自适应 FDFD 系数,因此本文提出通过 QR 矩阵分解求解相应的过定线性方程组来求解最小二乘问题。与现有的基于数值积分、CG 优化和顺序初值选择的自适应 FDFD 系数计算方法相比,本文提出的方法简化了计算过程,大大提高了计算效率。数值波场模拟结果表明,基于 QR 矩阵分解的自适应系数 FDFD 方法可以达到与基于数值积分、CG 优化和顺序初值选择的方法相同的精度,同时所需的计算时间更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simplified calculation for adaptive coefficients of finite-difference frequency-domain method

The finite-difference frequency domain (FDFD) method is widely applied for simulating seismic wavefields, and a key to achieving successful FDFD simulation is to construct FDFD coefficients that can effectively suppress numerical dispersion. Among the existing FDFD coefficients for seismic wavefield simulation, adaptive FDFD coefficients that vary with the number of wavelengths per grid can suppress numerical dispersion to the maximum extent. The current methods for calculating adaptive FDFD coefficients involve numerical integration, conjugate gradient (CG) optimization, sequential initial value selection, and smooth regularization, which are difficult to implement and inefficient in calculations. To simplify the calculation of adaptive FDFD coefficients and improve the corresponding computational efficiency, this paper proposes a new method for calculating adaptive FDFD coefficients. First, plane-wave solutions with different discrete propagation angles are substituted in the FDFD scheme, and the corresponding least-squares problem is constructed. As this problem is ill-conditioned and obtaining smooth adaptive FDFD coefficients by the conventional solving method based on normal equations is difficult, this paper proposes solving the least-squares problem by solving the corresponding overdetermined linear system of equations through QR matrix decomposition. Compared with the existing methods for calculating adaptive FDFD coefficients based on numerical integration, CG optimization, and sequential initial value selection, the proposed method allows for a simplified computational process and considerably higher computational efficiency. Numerical wavefield simulation results show that the adaptive-coefficient FDFD method based on QR matrix decomposition can achieve the same accuracy as those based on numerical integration, CG optimization, and sequential initial value selection while requiring less computation time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Geophysics
Applied Geophysics 地学-地球化学与地球物理
CiteScore
1.50
自引率
14.30%
发文量
912
审稿时长
2 months
期刊介绍: The journal is designed to provide an academic realm for a broad blend of academic and industry papers to promote rapid communication and exchange of ideas between Chinese and world-wide geophysicists. The publication covers the applications of geoscience, geophysics, and related disciplines in the fields of energy, resources, environment, disaster, engineering, information, military, and surveying.
期刊最新文献
Earthquake detection probabilities and completeness magnitude in the northern margin of the Ordos Block Multi-well wavelet-synchronized inversion based on particle swarm optimization Low-Frequency Sweep Design—A Case Study in Middle East Desert Environments Research on Paleoearthquake and Recurrence Characteristics of Strong Earthquakes in Active Faults of Mainland China Capacity matching and optimization of solar-ground source heat pump coupling systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1