Fallou Seck, Giovanny Covarrubias-Pazaran, Tala Gueye, Jérôme Bartholomé
{"title":"水稻遗传增益的实现:育种计划的成就","authors":"Fallou Seck, Giovanny Covarrubias-Pazaran, Tala Gueye, Jérôme Bartholomé","doi":"10.1186/s12284-023-00677-6","DOIUrl":null,"url":null,"abstract":"<p>Genetic improvement is crucial for ensuring food security globally. Indeed, plant breeding has contributed significantly to increasing the productivity of major crops, including rice, over the last century. Evaluating the efficiency of breeding strategies necessitates a quantification of this progress. One approach involves assessing the genetic gain achieved through breeding programs based on quantitative traits. This study aims to provide a theoretical understanding of genetic gain, summarize the major results of genetic gain studies in rice breeding, and suggest ways of improving breeding program strategies and future studies on genetic gain. To achieve this, we present the concept of genetic gain and the essential aspects of its estimation. We also provide an extensive literature review of genetic gain studies in rice (<i>Oryza sativa</i> L.) breeding programs to understand the advances made to date. We reviewed 29 studies conducted between 1999 and 2023, covering different regions, traits, periods, and estimation methods. The genetic gain for grain yield, in particular, showed significant variation, ranging from 1.5 to 167.6 kg/ha/year, with a mean value of 36.3 kg/ha/year. This translated into a rate of genetic gain for grain yield ranging from 0.1% to over 3.0%. The impact of multi-trait selection on grain yield was clarified by studies that reported genetic gains for other traits, such as plant height, days to flowering, and grain quality. These findings reveal that while breeding programs have achieved significant gains, further improvements are necessary to meet the growing demand for rice. We also highlight the limitations of these studies, which hinder accurate estimations of genetic gain. In conclusion, we offer suggestions for improving the estimation of genetic gain based on quantitative genetic principles and computer simulations to optimize rice breeding strategies.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"34 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realized Genetic Gain in Rice: Achievements from Breeding Programs\",\"authors\":\"Fallou Seck, Giovanny Covarrubias-Pazaran, Tala Gueye, Jérôme Bartholomé\",\"doi\":\"10.1186/s12284-023-00677-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Genetic improvement is crucial for ensuring food security globally. Indeed, plant breeding has contributed significantly to increasing the productivity of major crops, including rice, over the last century. Evaluating the efficiency of breeding strategies necessitates a quantification of this progress. One approach involves assessing the genetic gain achieved through breeding programs based on quantitative traits. This study aims to provide a theoretical understanding of genetic gain, summarize the major results of genetic gain studies in rice breeding, and suggest ways of improving breeding program strategies and future studies on genetic gain. To achieve this, we present the concept of genetic gain and the essential aspects of its estimation. We also provide an extensive literature review of genetic gain studies in rice (<i>Oryza sativa</i> L.) breeding programs to understand the advances made to date. We reviewed 29 studies conducted between 1999 and 2023, covering different regions, traits, periods, and estimation methods. The genetic gain for grain yield, in particular, showed significant variation, ranging from 1.5 to 167.6 kg/ha/year, with a mean value of 36.3 kg/ha/year. This translated into a rate of genetic gain for grain yield ranging from 0.1% to over 3.0%. The impact of multi-trait selection on grain yield was clarified by studies that reported genetic gains for other traits, such as plant height, days to flowering, and grain quality. These findings reveal that while breeding programs have achieved significant gains, further improvements are necessary to meet the growing demand for rice. We also highlight the limitations of these studies, which hinder accurate estimations of genetic gain. In conclusion, we offer suggestions for improving the estimation of genetic gain based on quantitative genetic principles and computer simulations to optimize rice breeding strategies.</p>\",\"PeriodicalId\":21408,\"journal\":{\"name\":\"Rice\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12284-023-00677-6\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-023-00677-6","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Realized Genetic Gain in Rice: Achievements from Breeding Programs
Genetic improvement is crucial for ensuring food security globally. Indeed, plant breeding has contributed significantly to increasing the productivity of major crops, including rice, over the last century. Evaluating the efficiency of breeding strategies necessitates a quantification of this progress. One approach involves assessing the genetic gain achieved through breeding programs based on quantitative traits. This study aims to provide a theoretical understanding of genetic gain, summarize the major results of genetic gain studies in rice breeding, and suggest ways of improving breeding program strategies and future studies on genetic gain. To achieve this, we present the concept of genetic gain and the essential aspects of its estimation. We also provide an extensive literature review of genetic gain studies in rice (Oryza sativa L.) breeding programs to understand the advances made to date. We reviewed 29 studies conducted between 1999 and 2023, covering different regions, traits, periods, and estimation methods. The genetic gain for grain yield, in particular, showed significant variation, ranging from 1.5 to 167.6 kg/ha/year, with a mean value of 36.3 kg/ha/year. This translated into a rate of genetic gain for grain yield ranging from 0.1% to over 3.0%. The impact of multi-trait selection on grain yield was clarified by studies that reported genetic gains for other traits, such as plant height, days to flowering, and grain quality. These findings reveal that while breeding programs have achieved significant gains, further improvements are necessary to meet the growing demand for rice. We also highlight the limitations of these studies, which hinder accurate estimations of genetic gain. In conclusion, we offer suggestions for improving the estimation of genetic gain based on quantitative genetic principles and computer simulations to optimize rice breeding strategies.
期刊介绍:
Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.