Jinpeng Shi, Donglai Wang, Yan Zhao, Chengze Li, Aijun Zhang
{"title":"基于 AOS-GCN-LSTM 模型预测变电站开关操作产生的空间电场","authors":"Jinpeng Shi, Donglai Wang, Yan Zhao, Chengze Li, Aijun Zhang","doi":"10.3233/jae-230089","DOIUrl":null,"url":null,"abstract":"The radiation of adjacent field sources has a specific spatial correlation. In order to suppress electromagnetic disturbance and improve the electromagnetic compatibility of secondary equipment, the electric field’s spatial coupling characteristics and distribution law should be mastered. Therefore, a method for predicting the spatial electric field generated by substation switching operation based on the Atomic Orbital Search-Graph Convolution Network- Long and Short-Term Memory (AOS-GCN-LSTM) model is presented to deal with this problem. First, the GCN is used to construct graph data according to node characteristics and topology information. The feature selection uses the Maximum Information Coefficient (MIC) to extract the spatial correlation of the adjacent field source radiation. At the same time, the LSTM is used to capture the temporal correlation characteristics of different position field strengths in space. Then, the AOS is used to optimize the model with a hyperparameter. In addition, the simulation data of the full-wave simulation model of the spatial electric field generated by switch operation in a 220 kV GIS substation is an example of verification. The results show that the prediction error of the proposed method is below 3%, and it has strong adaptability to the application environment and good prediction performance.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting of spatial electric field generated by substation switch operation based on AOS-GCN-LSTM Model\",\"authors\":\"Jinpeng Shi, Donglai Wang, Yan Zhao, Chengze Li, Aijun Zhang\",\"doi\":\"10.3233/jae-230089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The radiation of adjacent field sources has a specific spatial correlation. In order to suppress electromagnetic disturbance and improve the electromagnetic compatibility of secondary equipment, the electric field’s spatial coupling characteristics and distribution law should be mastered. Therefore, a method for predicting the spatial electric field generated by substation switching operation based on the Atomic Orbital Search-Graph Convolution Network- Long and Short-Term Memory (AOS-GCN-LSTM) model is presented to deal with this problem. First, the GCN is used to construct graph data according to node characteristics and topology information. The feature selection uses the Maximum Information Coefficient (MIC) to extract the spatial correlation of the adjacent field source radiation. At the same time, the LSTM is used to capture the temporal correlation characteristics of different position field strengths in space. Then, the AOS is used to optimize the model with a hyperparameter. In addition, the simulation data of the full-wave simulation model of the spatial electric field generated by switch operation in a 220 kV GIS substation is an example of verification. The results show that the prediction error of the proposed method is below 3%, and it has strong adaptability to the application environment and good prediction performance.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-230089\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230089","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Predicting of spatial electric field generated by substation switch operation based on AOS-GCN-LSTM Model
The radiation of adjacent field sources has a specific spatial correlation. In order to suppress electromagnetic disturbance and improve the electromagnetic compatibility of secondary equipment, the electric field’s spatial coupling characteristics and distribution law should be mastered. Therefore, a method for predicting the spatial electric field generated by substation switching operation based on the Atomic Orbital Search-Graph Convolution Network- Long and Short-Term Memory (AOS-GCN-LSTM) model is presented to deal with this problem. First, the GCN is used to construct graph data according to node characteristics and topology information. The feature selection uses the Maximum Information Coefficient (MIC) to extract the spatial correlation of the adjacent field source radiation. At the same time, the LSTM is used to capture the temporal correlation characteristics of different position field strengths in space. Then, the AOS is used to optimize the model with a hyperparameter. In addition, the simulation data of the full-wave simulation model of the spatial electric field generated by switch operation in a 220 kV GIS substation is an example of verification. The results show that the prediction error of the proposed method is below 3%, and it has strong adaptability to the application environment and good prediction performance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.