基于 AOS-GCN-LSTM 模型预测变电站开关操作产生的空间电场

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-12-14 DOI:10.3233/jae-230089
Jinpeng Shi, Donglai Wang, Yan Zhao, Chengze Li, Aijun Zhang
{"title":"基于 AOS-GCN-LSTM 模型预测变电站开关操作产生的空间电场","authors":"Jinpeng Shi, Donglai Wang, Yan Zhao, Chengze Li, Aijun Zhang","doi":"10.3233/jae-230089","DOIUrl":null,"url":null,"abstract":"The radiation of adjacent field sources has a specific spatial correlation. In order to suppress electromagnetic disturbance and improve the electromagnetic compatibility of secondary equipment, the electric field’s spatial coupling characteristics and distribution law should be mastered. Therefore, a method for predicting the spatial electric field generated by substation switching operation based on the Atomic Orbital Search-Graph Convolution Network- Long and Short-Term Memory (AOS-GCN-LSTM) model is presented to deal with this problem. First, the GCN is used to construct graph data according to node characteristics and topology information. The feature selection uses the Maximum Information Coefficient (MIC) to extract the spatial correlation of the adjacent field source radiation. At the same time, the LSTM is used to capture the temporal correlation characteristics of different position field strengths in space. Then, the AOS is used to optimize the model with a hyperparameter. In addition, the simulation data of the full-wave simulation model of the spatial electric field generated by switch operation in a 220 kV GIS substation is an example of verification. The results show that the prediction error of the proposed method is below 3%, and it has strong adaptability to the application environment and good prediction performance.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting of spatial electric field generated by substation switch operation based on AOS-GCN-LSTM Model\",\"authors\":\"Jinpeng Shi, Donglai Wang, Yan Zhao, Chengze Li, Aijun Zhang\",\"doi\":\"10.3233/jae-230089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The radiation of adjacent field sources has a specific spatial correlation. In order to suppress electromagnetic disturbance and improve the electromagnetic compatibility of secondary equipment, the electric field’s spatial coupling characteristics and distribution law should be mastered. Therefore, a method for predicting the spatial electric field generated by substation switching operation based on the Atomic Orbital Search-Graph Convolution Network- Long and Short-Term Memory (AOS-GCN-LSTM) model is presented to deal with this problem. First, the GCN is used to construct graph data according to node characteristics and topology information. The feature selection uses the Maximum Information Coefficient (MIC) to extract the spatial correlation of the adjacent field source radiation. At the same time, the LSTM is used to capture the temporal correlation characteristics of different position field strengths in space. Then, the AOS is used to optimize the model with a hyperparameter. In addition, the simulation data of the full-wave simulation model of the spatial electric field generated by switch operation in a 220 kV GIS substation is an example of verification. The results show that the prediction error of the proposed method is below 3%, and it has strong adaptability to the application environment and good prediction performance.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-230089\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230089","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

相邻场源的辐射具有特定的空间相关性。为了抑制电磁干扰,提高二次设备的电磁兼容性,需要掌握电场的空间耦合特性和分布规律。因此,针对这一问题,提出了一种基于原子轨道搜索-图谱卷积网络-长短期记忆(AOS-GCN-LSTM)模型的变电站开关操作产生的空间电场预测方法。首先,利用 GCN 根据节点特征和拓扑信息构建图数据。特征选择使用最大信息系数(MIC)来提取相邻场源辐射的空间相关性。同时,利用 LSTM 捕捉空间中不同位置场强的时间相关性特征。然后,利用 AOS 对模型进行超参数优化。此外,还以 220 kV GIS 变电站开关操作产生的空间电场全波仿真模型的仿真数据为例进行了验证。结果表明,所提方法的预测误差低于 3%,对应用环境的适应性强,预测性能好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting of spatial electric field generated by substation switch operation based on AOS-GCN-LSTM Model
The radiation of adjacent field sources has a specific spatial correlation. In order to suppress electromagnetic disturbance and improve the electromagnetic compatibility of secondary equipment, the electric field’s spatial coupling characteristics and distribution law should be mastered. Therefore, a method for predicting the spatial electric field generated by substation switching operation based on the Atomic Orbital Search-Graph Convolution Network- Long and Short-Term Memory (AOS-GCN-LSTM) model is presented to deal with this problem. First, the GCN is used to construct graph data according to node characteristics and topology information. The feature selection uses the Maximum Information Coefficient (MIC) to extract the spatial correlation of the adjacent field source radiation. At the same time, the LSTM is used to capture the temporal correlation characteristics of different position field strengths in space. Then, the AOS is used to optimize the model with a hyperparameter. In addition, the simulation data of the full-wave simulation model of the spatial electric field generated by switch operation in a 220 kV GIS substation is an example of verification. The results show that the prediction error of the proposed method is below 3%, and it has strong adaptability to the application environment and good prediction performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Clinical Practice Guidelines on Palliative Sedation Around the World: A Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1